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CHAPTER I- INTRODUCTION

1. The Field of Endeavor

hedcie s"Tetti f ttp u|e n neiaa a~ln! ~
The field cunwuiiiy called AxLLicial Intelligence may, perhaps,

............. a "lh totally of 4CevpL.s L.o make and understand mac hines

that perform tasks which till recently only human beingRs .11,! perform and

perform the r wilh cfticiency and effectivenesi comparable to a human."

There ha been a large amuunt of conroversy on the aptness of the :ame

....t .... InLlia, c for the field. Th-re is probably io~ne utility

to this kind of discussion in view of the general impression the name

makes on the mind of the lay public. However, for the purposes of techni-

cal discussion one may decide not to attach any significance to the name

apart from what is implied by the definition. This kind of special tech-

nical use of well-known words is not without precedence, One may recall

the word "Energy" as used in Physics or "Group" as used in Modern Algebra.

The definition of the field given above is certainly not very

precise. It has always been extremely difficult to define areas of tech-

nical endeavors with precision. However, it may be worthwhile to try and

make some clarifying remarks which seem called for.

In the definition, when one refers to an activity performed by

a human being, it is not clear as to what aspects of the activity are con-

sidered important, If a machine is designed to play checl(.r, for irmtanc,,

one can demand that:

i) it wins often against h -,aan players,

ii) it produces electroencephalograms similar to humans engaged

in playing checkers,

iii) it holds and moves pieces on a cherkerboard with the same

grace as some human beings do,

iv) it makes a move is less than ten minutes,



it Fivema to ha-ve b.-,n thc cia" j of the prnrtittoners in the field

that the first and fourth demand above should be made while the second and

third demand should not be nAde. There ia indeed so" rAL urule for much

a consensus. However. the dincuion of the ratonar will carry this houk

far frow its purposi' as stated in the preface. For the purposes of thia

book any task under discussion will be considered to bo no described by the

con*rnsus. No effort will 4e =adc to juitily thi ;vnsensus.

To avoid a certain unfortunate implication of the definition

another aspect of the definition will also bear clarification: the inter-

pretation of the phrase "till recently". If the phrase is interpreted to

refer to the recent past at any future time of discussion(within the

period of relevance of the book), then the field of Artificial Intelligence

takes on an aspect of ephemerality and becomes a clearing house for ill-

understood techniques. This is not intended and the phrase "till rccently"

should be interpreted to refer, within the period of relevance of this book,

to the time of writing of the book. Hence when a machine is made to perform

a humar, activity for the first time, the definition should not be taken to

assert that later attempts to make better versions of the machine should be

considered as outside the field of Avtificial Intelligence. Even after a

machine is constructed which meets the specification of the definit on, any

attempts to make machines which perform the same task by a different method

would still be in the field. So would be theoretical attempts to shed light

on the performance of such machines, since this might facilitate the con-

struction of machines which perform other similar tasks.

However once the method of construction of machines for the

performance of a certain class of human tasks is well understood, the
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construction of such machines would also be considered as an activity in

some other field depending on thu naLure at the machine as well an the

irioge tof buldig ill

The last point needs discussion. A rather cursory glance

through the activities in the field of artiticial intelligence will reveal

R rumbcr of diffarent ienlhiques and purposes.

Viere have been some attempts made at using digital computer

programs for finding satisfactory solutions of industrial or engineering

Juldii pc . -- i ptimal solutoln war either 'aid to define or too

time consuming to obtain. If techniques for writing such programs for

specific purposes become well-understood and perfected, these activities

would probably be conAidered as parts of the appropriate branches of

managemcnt or engineering - or disappear altogether, being replaced by aub-

routine libraries.

There have been many digital computer progrnms designed [ 1

to simulate certain activities of the human mind. There have been simu.

lationo of groups of humans, as in Sociological phenomena (including economic

phenomena). There have also been uimulations of individual humans finding

solutions of complex combinational proble"s, making deductiona from a

corpus of given facts or recalling facts by association. Once the method

of design of such programs and their ume for Psychological or Sociological

investigation is well undecstood, it may again be reasonable to classify such

activities in Psychology or Sociology, As before, Economics has been

included in SocLology for the purposes of this discussion.

The state of formalization of the field, however, is such that

it is difficult to say with respect to a specific attempt, as to whether it

is an effort to simulate human processes or an effort to solve a certain
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problem, if the problem is onp whope solution, is of iravdiate applica.

bility in technology management or, one can even ignore any purposes the

attempt serves Yor the ?sy,:holokiet or Sociologist and classity the atteupt

As potentially belonging to technology or management. It, however, the

probirm ip of no imrleatte ipplirablilty, it would be unfair to clansnif

the attempt as belonging to Psychology cr Sociology unleis the motivation

for writing the program arose from a psycholugical or Sociological

interest. Often such programs are claimed to have been designed to simulate

the way the p-crgmr'er belie-ies he would attempt to solve the problem

himself; however, the motivation in these cases may come from a desire to

solve the. problew rather than to understand human phenomena.

There hab been considerable discussion as to whether such

attemptn need be classified as activities in a recognized field of Science.

Many feel that it may be easier to classify them as recreational activities

of some clever computer prograurers. However, there have been many

occasionu in the history of Science where the recreational activitles of

some people have led to insights that have enriched Science or even tech-

nology or business: these computer activities may well lead to such an

enrichment. Study of the literature in the field indicates that the various

attempts made at writing efficient programs for finding solutions of large

combinational problems show some basic coiaunality of approach and technique.

Semi-formal attempts have also been made to codify these similarities into

a theory. Such study of empirical attempts and results, together with

attempts to unify them in becoming an important branch of Artificial

Intelligence. One may call thi6 branch, "Theory of Problem Solving".

It appears that the time to not too far distant when this kind of activity -

a study of problems and their solutions independent of any psychological
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connotations will denote a well defined area ot endeavor. Apart from

the appropriateness of this field as an Important .u'bfield of artificial

inLelligencw, it may also be considered n" A branch of Computer Science

or perhaps "uthematics. in a lcas foLruil way. this activity has followed

by students of Mith.doloy in Philosophy,

By its very nature, theory of Problem Solving is an applications-

oriented discipline. Even at thip early stage ot its development, tech-

nique and ideas originated in the field of Artificial Intelligence has

found and promises to find fruitful applications in Science and Technology

f2J.

"Pattern Recognition" is often cons'dered as a separate branch

of Artificial Intelligence, although there has been a growing recognition

over the years of the close relationship between this field and what has

been delineated above as "Theory of Problem Solving", However, this relation-

ship is very ill-understood, One of the reasons for this is the lack of a

clear set of definitions of terms used i- the field of "Pattern Recognition".

Therv has been enough activity in the field toindizate that the basic idea

deals with the recognition of a given object as belonging to a given set

of objects. This recognition is only possible when there is a statement (in

some language) which is true for all objects in the given set and is

false for all objects not in the given set . For reasons associated with

the history of the work at Cafe, the act of objects will be called the

,patter"flor 'toncepe'. This is at slight variance with the intuitive use of

the term' attern." One often uses the term to denote the description of the

set or those statements about the recognizable object which implies the

description. For the purposes of the book, the words 'Oattern"and"Loncept"

will stand for the set of objects.
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A perusal of the usages in the field indicates that a I
pattern recognizer" is a machine which can form the description of a

pattern wh.!u pr %ntcd with a amal number of objects in the pattern.

Tha ters "patterii .earai.i." will be used in this book for the activity,

reserving "recognition" for the much simpler activity of recognizing whether

a, object belongs to a pattern with a given description.

Wbile o L activities in the othex fields of Artificial

Intelligence have been carrieu out with the aid of digital computers, a

considerable am, ant of the work in Pattern Recognition hae used the aid

of other devices. The uai of adaptive threshold logic elements was one of

the fitst steps taken in this field of endeavor. By now the original

uproar regarding the neuro-physiological significance of such devices has

subsided. However, threshold logic (adaptive or otherw4.se) remains an

interestinS area of study in the field of switching theory. It is possible

that a theory of "neural networks" based on such devices will have a strong

influence on the thEory of p-ttern recognition; however, such a possibility

seems remote at prusent.

in what has gone above we have made an attempt to subdivide

the field of Artificial Intelligence. Almost the entire content of this

book deals with the area designated as "Theory of Problem Solving". Since

Pattern Recognition (studied as a computer algorit.hm) is very closely

ralated to this area, pattern recognition will also be discussed at length.

The approach that will be used may be described as Systems

Theoretic. A model Oor problem situations will be set up using certain

abstract and quite elementary set theoretic concepts. In its abstract

form, such a model can be looked upon as a generalized definition only;

th. model does not appear to contain indications of what might be considered
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to be mcthods of solving the problcm. To obtain such indications, certain

further structures would have to be assumed. Stating the matter another

way, one may say that the minimal structure needed for defining a problem is not

7 sufficient to define methods of solution, Various forws of ekLra struc-

tures can be introduced as tools for the discussion of methods of solution.

In this book only one such structure has been chosen. The reason for this

choice is historical - in that this was the first atructure that occured

to the school of investigators whose work is presented here,

The resulting model, embodying the model of problems with

certain extra structures, is almost identical with the model of problems

envisaged in the General Problem Solver developed by Newell, Simon and

Shaw. However although the model as it stands is sufficient for the begin-

nlings of a discussion of solution methods, this advantage was not ui3ed by

the originators of the General Problem Solver. Instead, a specific method

of solution was developed an~d studied, but never described with adequate

precision.

It has been argued hat the mere existence of Lfn abstract

model for solution methods is of no value. What is crucial is an adequate

description of the problrm which makes it amenable to the solution method.

The argume-1- is perfectly valid in so far as it says that abstract sets

do not have sufficient structures for the study of any specific solution

method. However, the argument does not imply (as it is often made to

imply) that one therefore should not use a precise theoretical approach to

describe solution methods. This false implication has led to the use of

intuitive and imprecise descriptions of solution methods. it is hard to

make any judgement as to whether this has been of advantage or of disadvan-

tage to the field. However at the present state of the art an effort at
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making one's discussions precise and mathematically correct promises

immediate returns; in case of communication and documentation of ideas

and results, in quick evaluation of basically erroreous ideas - and perhaps

also in rai klaiIovatlJua by interaction with related fields.

If one considers the major part of the argument against

precise models of solution methods, one is forced to agree that a problem

formulation to be meaningful must have with it an adequate representation

of the problem in some language. This is in no way at variance with the

basic tenets of systems theory. It is clear that no specific problem can

be formulated unless the sets associated with the problem arv adequately

described in some language. Indeed, the effectiveness of this language of

description turns out to be easy to discuss in terms of its efficiency in

describing the sets associated with the solution methods. But this needs

precise definitions of the associated sets.

The above discussion indicates another important belief on

which this book is based. A meaningful theory of problems and their solu-

tion ahould include or have close relationships with a theory of descrip-

tions and description languages. Such a theory will be discussed in this

book, together with a model for problems and some models for problem solu-

tion.

It is not claimed here that either the models of problems and

solutions or the theory of descriptions as they stand at present are

adequate for the purposes of Artificial Intel~igence. However, a belief

is inherent that any meaningful theory c& problem solving must include such

precise models and theories.

*I
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2. Outline of the Basic Models

Vie present book will deal with models of problems and two-

person gamea. Buth of these will be specialization of a general model dis-

cussed by Marino [ 3 J. This model can be looked upon a, a general model of

control systems in addition to that of problems and games.

Basically, one is given a set of objects which are called

"states" in control theory and may be called "situations" in the theory

of problems and games. In addition, there are two other sets, whose

elements will be called "controls" and"disturbances". iven a control

paired with a disturbance, certain situations are changed to other situa-

tions. The modes of such changes are pre-specified. A certain set of

situations have their elements labelled as desirable or "winning situations".

Given a situation, the control problem is generally stated as the problem of

finding a control such that no matter what disturbance it is paired with,

the resulting situation is a desirable one.

When a real control problem is posed in such abstract terms one

often finds that the set of controls and the set of disturbances are so

intractable that an appropriate control is practically impossible to choose

among the host of possibilities. Fortunately, most real problems impose

certain extra properties on the situations, controls and disturbances.

Many have the property that the control and the disturbance sets are

"generated" by a more tractable set of elements. This will be made precise

later. For the present purpose one may say roughly that each control is a

sequence of "elementary" controls and each disturbance is a sequence of

"elementary" disturbances. The problem then reduces to that of finding

a sequence of elementary controls such that no matter what elementary dis-

turbance is paired with each elementary control, the final result of the



-10-

sequence of pairs is a winning situation, This problem may be called the

problom of finding an "open loop controller".

One difficulty often arises with such a specification of the

problem - a difficulty which is often ignored in control problems but is

of supreme importance in games. The difficulty arises because all elemen-

tary controls may not be applicable to all situations. As a result, a

sequence of elementary controls cannot be chosen which will be applicable

irrespective of what elementary disturbance they got paired with.

One can get around this difficulty by asking, not for a control

sequence, but for a "control strategy". A strategy is an initial decision

on the control to be used at each situation, any time the situation arises.

Given a certain situation, one decides on the control dictated for the situa-

tion by the strategy. Depending on the disturbance that is paired with

this control, a new situation arises. A new control is then dictated for

the new situation by the strategy and the process is repeated. If such a

sequence ultimately results in a winning situatton irrespective of the

disturbance, the strategy is called a "winning strategy". The finding of a

"winning strategy" is analogous to finding a "closed loop controller".

The idea of a strategy essentially envisages a Bellman-type

embedding of a problem in a larger problem [4 ]. It is of advantage even

in cases where it is inessential - that is, when the applicability of con-

trols are independent of the situation. Moreover, it is well-known that

in some control problems one cannot build an open loop controller while a

closed loop controller can be built.

The general model of control situations can be specialized to

yield some special classes of the so-called problem-situations. Mesarovic (5
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has classified problems into various types one of which is as follows:

"Given a set S, subsets T and H of S and a set of functions F such that

each alamant of F ipis i nuu 5, Lo find a member of F which maps each

element of H into some element of T".

When one defines a real problem in this framework, one faces

tht: &awe kind vf difficulty as in the case of the control problems.

Mesarovic had pointed out in his paper that the set F, to be tractable,

should be "constructively defined". Windeknecht [ 6 ] assumed a specific

constructive structure of F by assuming that elements are obtained by

composing functions from a finite set F of functions. He also stipulated

that the elements of F were partially defined over S, so that the compo-

sition operator defined a partial semigroup rather than a semigroup. H was

considered as a unit set. ilis model will be followed in this book except

that for the purposes of this book it will not be assumed that F is a0

finite set.

If a problem is defined in the manner given in the above para-

graph, one sees a clear relationship between this model of a problem with

the model formulated by Marino. If in the model of Marino the set of

! Ielementary disturbances be a unit set (whose element may be called

"inaction") then each elementary control defines a map from situations

to situations and can be taken to be members of F . This analogy will be

pursued rigorously in the next chapter.

The model of problems discussed here is also very closely

related to the model used in the General Problem Solver. In this latter

model one is given a set of situations and a set of transformations each

of which changes some situations to some other situations. One is supposed

to change a given situation into another given situation (the "goal") by
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applying a sequence of transformations. The point at which the model of

the general problem solver differ@ from the model envisoged in this book

lies in the introductioin of a set of goal@ (winning situations) instead
Wi

,of a aingla uuo. This difference is not merely a matter of generalization.

It will be shown in the next chapter that in some of the specific cases

handled by the general problem solver, one is actually interested in a set

of -o~lm rather than a single goal. This become evident especially in

view of some recent extensions [ 7 J of the original CPS,

At this point no attempt will be made to discuss the major part

of the General Iroblem Solver which deals with methods for finding solutions

to problems. This will be done later. For the purpose of the present

section, it would be more important to point out how the model proposed by

Marino can be reduced to the model of a two-person game.

If the extended form of a zero-sum two person game of the

von Neuman Morgenstern type C 8] be restricted to have pay-off functions

whose values are only 1, -1, then such games can readily be shown to be

-! representable by a special class of Marino-type models. In these, one

fixes a specific elementary control and a specific disturbance, each called

"inaction". It may then be specified that in each situation either theI control inaction or the disturbance inaction is applicable, but not both.

This introduces the concept of the player's move and the opponent's move.

Also a further axiom can be introduced if necessary forcing the player and

the opponent to move alternately.

The above model can be made to represent an N-person game in

that the disturbances may be considered to be the result of the joint action

of n-I players, However, since such an assertion sheds no light on the

behaviors of the separate n-1 p ,ayers (with respect to coalitions and related

phenomena), this assertion will not be made seriously here.

/
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However, the model here is not so specific as not to include

games with incomplete information. One need nlot construe the elements of

S as embodying the entire information regarding the past of the vame As

a matter of fact it will be noticed that in the present model the entire

pact is riot embodied in a 2itustion, Unlike in von.Neuman's model of eAtended

games, the present model is not a tree, but an autowaton (or a Inbeilcd

directed graph). One can carry this process a step further and consider a

situation as the "state of information" of a player, i.e. a subset cf the

set of "actual uituations". It would not be too difficult to show how

a game with incomplete information can be converted into a "larSer" gamc

(with a larger number of satuxtions) with complete information - in a way

analogous to converting a uon-deterministic automaton to a deterministic

automaton. However, this generalization does not shed any further light

on the wetheds of solution in the abstract, and will not be pursued further

in this book.

ia
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3. A Set-Theoretic View of PatLarn Recognitio,

The main purpose of this book will be to consider certain

methods for finding sulutions to problems and gameo and their relationship

to paictt= KcaLwniivin. This reiationship can be diseussed in a ciear

mannar if both the activities (froblem-solving and pattern recognition)

can be discussed within the same mathematical framework. As has been said

before, the framework of elementary set theory will be used in this book.

In their sseance, the methods of problem solving will be taken

to stem from the existence of certain basic subsets of S associated with a

problem or game. Some such sets (like the winning mituations, or the domain

ot applicability of dift~rerL controls, etc.) are provided by the rules of

the game itself. Certain others are suggested by the idea of a solution.

To see this roughly (detailed discussions will appear later) one can imagine

that one person who knows the solution of the problem for every initial

situation intends to transfer to someone else his knowledge. For every

specific control he will have to define the set of situations in which

that control is to be used. These are one class of sets associated with

the idea of solution, Other sets associated with the ides of solutions

will be considered in the next chapter. Meanwhile, it is crucial to make

the point that in all cases of interest the set S of situations is extremely

large. Hence those sets cannot be exhibited by

any practicable enumeration technique. It is this difficulty which holds

up efforts at problem solving.

However, the difficulty may not be unsurmountable. It may

be recalled that although the set of situations is large, no difficulty

arises about its enumeration. Any chess player can recognize a chess



position no a chess position. Similarly, the set or all

mates nhver have to be enumerated either - a mate iL easily recognizable

when it occurs. The rules of thu Kuuw gve us Lhe controls, disLubances

and winrin 51tuat'io, oiot aa %;,LvpB bA hir "escriptionr,"-

methods by which members of these sets can be recognized when they arise.

Similarly any solutLin method, to be practicable, must he expressed in

ccrm= of the dof Lhe 4*ts nsocint:ed with the solution methods.

The difficulty lies with the word "practtcable". The prac-

ticability of a strategy is strongly dependent on the language one uses for

the description of the sets associated with the solution methods. One can

change the language of description to change the practicability of various

solution methods,

or problem
The difficulty of finding a solution of a game/lies in the fact

that the language which is needed for practicable descriptions of the sets

associated with tne solution method is seldom identical to the one used in

describing its rules, i.e. the controls and the winning, losing

and draw situations. Ideas regarding description languages is crucial here -

as they are in any adequate theory of pattern recognition. In what follows,

an approach to the formal definition of such terms as "description",

"description language", "pattern", etc. will be given.

As stated previously in Section 1, a pattern may be defined

as a set of objects. One can consider the pattern of all the letters "A"

projected on an array of photo-cells, the pattern of all checker positions

showing satisfactory center control [ 9 ), the pattern of all sets of

theorems from which a deeired theorem can be obtained by Modus Ponen [i0].

It will be worthwhile to realize at the outset that when one

tries to develop a language for describing a class of patterns, one cannot
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seriously mean to be able to describe the class of all patterns (if one

tries, one faces i=ediate dile=am like, "Do the set of all paterna which

aic uot clcmcnta of themselves form a pattern?"). The clans of patterns

has to be restricted, The initial restriction that will be made here will

be to a clavv ul subsets of a gliven set, which we shall call the Univerae

of discourse or simply the Universe. By definition, any object will be

taken to bclong to the Universe.

If the universe is finite, one can consider any subset of it

to be described by a list of its elements; but if the subset (or pattern)

is large, one caunot call such a description practicable. One has, at this

point, to make some further restrictions - to assume some further structure

for the universe,

Without too much loss of realism, one can make the assumption

that there are certain general statements one can make about elements of

the universe whose truth can be tested easily for any specific element of

the universe. Such statem nts will be called "Predicates" in keeping with

literature in Symbolic Logic ( 16). The assumption will be that in addition

to the universe, one is also given a *et of predicates.

It has already been indicated that the description of a pattern

yields a procedure which has the following property; given an element of the

universe, the application of the procedure determines whether the element

belongs to the pattern or not. Clearly any pattern, each of whose elements

satisfy a given predicate (which, in turn, is satisfied only by the elements

of the pattern) is describable by that predicate. One can say, therefore,

that our assumption has led us to a class of patterns which areeasily des-

cribable" in the sense that their descriptions are embodied by single pre-

dicates whose truths are easily tested for.
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We can take the easily descrtihab:e class of patterns as

forming the generators of a Boolean Algebra. The class of describable

patterns may be restricted to the eletnents of this Boolean Algebra. If

one does this, one my mke the rather trivial statement that a descrip-

Lion language whirh incorporates the initial predi ;dteb and usei the logical

connectives of "or", 'and", "not", "implies", etc. will be able to describe

any element of the class of patterns under consideration.

The major problem, however, is not so much of the posibility

of description, but of the efficiency of description. One needs descrip-

tions where the elementary predicates are combined in such a way that the

resulting statements are not inordinately long. Also, one needs the state-

ments to be such that their truth and falsity can be tested for without an

inordinate amount of processing. This once more restricts the class of

easily describable patterns.

Logical connectives are not the only means by which the

initial predicates can be combined. A large amount of work has gone into

combining predicates by threshold gates [17), for instance. The patterns

which yield short descriptions through single applications of threshold

logic form a sub-class of the class of all describable patterns. All des-

cribable patterns can be described by more than one application of thres-

hold logic.

One can in an informal way define a description language to

consist of a set of initial predicates and a set of connectives or modes of

combination which can be used to combine the initial predicates to yield

descriptions of describable patterns. The class of patterns easily des-

cribable by a given description language depends on the description lan-

guage.
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The class of pattorns whose elements are to be described ic

determined by the problem which necessitates the recognition of elements of

the patterns in the class. "The basic problem then r-educes to the following,

"Given a class of patterns, to develop a description language which yields

short and easily procrpsable descriptions for all patterns in h class."

At the present time no practicable izethod for the s',lution of

ouch a problem has brun developed (as a matter of fact solution methods

for very few problems have been developed). However, a study of the prob-

lem in its formal aspect indicates the need for a unifortm model of descrip-

tion languages in which different description lanpuages can be embedded.

This enables changing one language to another - a definite necessity for

the specification of the Dasic problL.A itself, in what follows some of the

basic bWilding blocks for a generalizerl description language of this kind

will be rpecified.

Initially, some structure will be assumed for the predicates

of the language. It will be assumied that each specifies the result of a

test performed on an element of the universe. In effect, the test is a

mapping from the universe to the set of results. The kernel of this map

(an equivalence relaticn) induces a partition on the universe. The eiewents

of this partition are mapped one-to-one onto the set of results. The image

of each element of the partition under chis map will be called the "name"

of tne element.

One can thus make two equivalent statement about an element

u of the universe: (1) "Vie result of performing test P on u is p," or

(2) "u belongs to the element p, of the partiton P". For historical

reasons the second form of the statement will b a0hered to.
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With the basis made above one can define a pattern as either an

element of a pn-tition or obtained from other patterns by set theoretic

operations. In what follows each partition will be called an input property

and the elementLs of a property will be called its values.

Any act of pairwise disjoint patterns whose union covers the

universe will also be called a property. By definition, any input property

is a property, but not conversely.

An object is a pattern wh!ch is either contained in or disjoint

from any value of any input property. It can be shown quite readily that

an object is either contained in or disjoint from values of all properties.

IL can further be seen that an object is an intersection of a class of

values of input properties. They can, therefore be represented by a list

of pairs of names, each pair consisting of the name of a value and the

name of the property to which the value belongs. For example, a typical

object might be "(P1 , pi3 ; P2, P21; P3, p33)
'

Any pattern can be described by a Boolean expression involving

values or a statement involving predicates of the form P(u) - p where P is

an input property. The pr-,obleu& of finding the simplest expression ees-

cribing a pattern is a problem closely analogous to finding the simplest

expression for a switc ing function (as can be seen, switching functions

are special cases - each input property has two values). The solution

depends basicaliy on what one means by "simple" and, as itk the case of

switching function, the solution can be found only for some restricted

definitions of simplicity.

Very iften, after the simplest de cription is found for a pattern,

this "simples" ' description is still so complex as to be unusable. At this

point one can hope to find simpler descriptions if ones uses preperties

other than i': us properties in the description. To do this, one needs to
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allow pridiawLu of he form u c K where K is the value of some property

other than an input property. Of course, to use ouch a description one

needs to invoke the description of K as a pattern. One thus obtains the

anaiog of the Aehenhurst dec.poition [18) of a Dooleai function. in a

later chapter some of the techniques and terminologies associated with

these problems will be discussed.

The litcrature in the field of pattern recognition indicates

that the only kind of switching functions that have found use in the field

are those expressible as conjunctions and as threshold exprefsions. Thu

largest effort in the field is spent on finding the "useful" properties that

render the pattern expressible in one of these simple forms. Unfortunately,

there is no uniform method for expressing the processes that yields values

of these useful properties. If one considers the problem with the set-

theoretical bias inherent in this book, a rather interescing uniformity

emerges. One often finds that these processes yielding the values of the

useful properties really process the names rather than the denotations of the

input properties and their values.

There will be later occasions to discuss this kind of process-

ing for some seemingly realistic situations. For the present one can con-

sider the following rather artificial example, which is based on a rather

well-known example used by Bruner (19).

Let the universe consist of the 9 configurations shown in

Figure l.1. We shall call the atomic objects of this universe 1,2,...9

for convenience, as shown in the figure. Formally, the universe will have

two input propertie3, whose names will be "crosses" and "borders". (One

could denote these properties by P1 and P2 in keeping with the definitions.

However, since the future discussions will be heavily dependent on the names,
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x - x~ x2i -(x

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Fig. 1.1

A simple universe iLlustrating the use of non-input properties

and the usefulness of processing names rather than denotations of values.
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th r-"y bc as good a place as any to introduce names which have greater struc- 1
ture than abstract ajmbols. Each of the properties have three values which

shall have "one", "two" and "three" as nawvs.

To givea !ituitivo mca'ning to thuse properties and values,

let the set (1,4,7) be the value "one", of the property "crosses". Simuiarly

let (4,4,6) be the value "two" of the property "borders".

Thia univcrse haa the convenient property that every distinct

atomic object is the member of a distinct and unique object. As a result,

every subset of the universe is a pattern. For the purposes of the present

discussion, the pattern (4,7,8) - A (say) may be considered. This set will

be described in three different ways: one using only input properties, one

by using properties other than input properties, one by using relationships

between names of the values of properties. This will be done to illustrate

the three methods, rather than to exhibit the difference in their efficiency

as description methods. Such difference can be exhibited conclusively

only for larger universes; examples will he given later when the description

language is introduced formally.

One could describe the pattern A formally by the statement:

SxcA a (crosses(x) = one)A ((borders(x) = two) k'(borders(x) = three))

, (( crosses(x) = two).4(borders(x) = three ))

involving only predicates of the type P(u) = p.

The pattern A could also be described with statements of the

type ue K as follows

xe A (xC B)A (xc C)

xc B (crosses(x) - one)V(crosses(x) = two)

xc C = (figures(x) = one)V' (borders(x) = three)
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This form of description is of advantage only if the patterns B and C can

be involved in the description of many patterns other than A.

In many existing pattern recognition schemes, the switching

function for a Vattern is reatrictad to have some specific form. For

instance It M-7 bc restricted to have a form realisable by a single three-

hold gate. If, for example, one makes the restriction that A be deicribcd

by a minterm expression, the second description above would be according to

such a restriction. The pat'terns B and C would be "useful" features for

describing A. In most cases such features are obtained by processing the

names of the values of the Input properties and not in the form of a

Boolean Expression as done here. It is desirable for the sake of

uniformity and flexibility of the description language, however, to express

such preprocessing of names in the same format as other descriptions.

To illustrate such a format a third alternative description for

the pattern A above will be exemplified. This example will take advantage

of the fact that the names of the values of the two properties, "crosses"

and "borders", come tram the set of numerals and the concept A can be des-

scribed in English by saying "In any element of A, the number of crosses is

less than the number of borders". The description language will need some

method for expressing the relation, "less than". It will be shown later

how a relation can be expressed as a pattern in the universe of ordered

n-tuples. This involves the introduction of several new universes. For

the present purpose, only one new universe needs be evoked. This will be

evoked to enable the expression of the symbols "one", "two" and "three"

(the names of the values of the properties crosses and borders) as their

binary counterparts. Each numeral will have two properties, "head" and

"tail", standing for the twos place and the ones place of their binary

UI
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expansion. The values of both these properties will be called F and T.

The numeral "two" for example will take the form (head, T; tail, F).

With this ncw uaiLverse in mind one can describe the pattern

xc A (head(border(x)) = ')A((head(crosses(x)) - 0

((tail(borders(x)) = )A( tail(crosses(x)) = 0)))

As before, the advantage of such a description becomes clear only in those

cases where the uaiverses involved are much larger. There will be later

occasion to discuss this. It may, however, be pointed out at this point

that even where such an advantage is obtainable, it is obtained at the

expense of making the objects of the universe more complicated (imbuing

the universe with greater structure). For example, as long as we used the

symbols "one", "two" and "three" as values of crosses and borders, a

typical object (6,say) of the universe would be (crosses, two; borders,

three). When the values themselves are construed to come from th! structured

universe of binary numerals, the same object becomes (figures, (head,T;tail,F);

borders, (head,T;tail,T)).

The relationship between the richness of the description l.n-

guage and the facility of problem solving will be discussed through some

examples in later chapters. The present section can be brought to a close

with the following remarks.

So far discussions have been limited to descriptions of patterns.

Given a description language one wants to construct a processor which can

operate on objects to determine whether they are contained in any given pattern.

This presupposes certain restrictions on the language. For instance if the

language is strong enough to describe recursively enumerable sets of objects,

no processor of assured ability can be built.
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Even assuming that one has a language ;4fich enables the con- I
struation of the corresponding processor, this would not solve the problem

of "paLLucn recognition".

It appears from the literature that pattern ricognition coin-

sists (f forming rather than processing a dcacrLption. What Is generally

envisaged as pattern recognition is the following phenomenon. A processor

in presented with a set of objects, each of which is tagged to indicute

whether or not is is contained in a given pattern. ;rom this data, the

processor iv supposed to form a description (in somne lar'uage) of a pnttert,

which contains all the objects tagged as being contained in the Siyeii pattern

and does not contain any object which is tagged as not eing contained in

the given pattern.

It is not overly difficult to build such a processor. The

difficulty so far lies only the simplicit-v of the generated description.

This has been di3cussed before. liowever, another demand is often made on

the description generuting processor. It is expected that the description

constructed by it will be such that when an untagged new object is presented

to the proceasor, it will fit the description if and only if it belongs to

the given pattern. This is clearly an impossible task in general - the

only evidence presented to the processor about the pattern having been the

taggcd objects. As long as the tagged objects do not exhaust all objects

in the universe of discourse, one can always have a number of distinct

patterns satisfying the tagging of the elements. The processor builds the

description of only one of these patterns - it would be self-defeating to

form all the descriptions, and even that would not help in the recognition

of later untagged elements.
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Thy phenomenon uf "generalization" has received some attcntion

train utatisticians [20]. Their studies seem to indicaLs that the numberI

of tagged objects needed for stablishing i degree of confidence in a des-

cription is arrong1y tIr p dnanr on the usefulneno of the fcaturce used and

the regultinE vimplicity of description. There will be later occasion to

co r3rnt on this raatter in detail.

U'
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4. The Arrangement of the Book

In the next chapter (Chapter TIT) MArtnots model will bc intro-

ducei formally and San of its important properties discussed. It will then

ba ihtii how sonw of the important concepts associated with the Marioo model

can be specialized to the. Windeknecht model. So=e important cldbdea oi sets

assOciaLed with solution methods will be isolated and discussed. It will

be pointed out how some of these classes have already been used in some

case studies reported in literature.

in Chapter III the Marino model will be specialized to the case

of two-person games and a discussion similar to that in Chapter Ii will be

instituted.

As a prelude to Chapter V on Pattern Recognition, Chapter IV

will introduce in a precise and detailed manner the description language

introduced in Sec. 3 above. This will enable the discussion of similarities

and differences between various pattern recognitionschemes.

In all these Chapters certain statements made in this present

Chapter will be established precisely.

In Chapter VI the role of pattern recognition in problem and

game solving will be discussed. The importance of the appropriateness

of the description language will be brought out in view of the crucial role

it plays in learning solutiQn methods. Some examples will be given. These

will be simple, merely because very few difficult examples have been worked

out.

In Chapter VII short descriptions will be given of certain

research activities at the Case Institute of Technology where computer

programs have been implemented for certain problem solving tasks. The

success and failure will be discussed in view of the theories discussed pre-

viously.
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1. Introduction

The nmin purpose of thin chapter is to dimcuna problems as

modelled by Windeknecht (rhuse will be called W-problemn in the future).

Hiwever, sinte many ideas relevant to Marino's model is relevant to ths.

as well as to the next Chapter, the next two sections of the present Chapter

Will be devoted to Marino's model (hereknnfter called M-situations), to

some of its properties and to its relation nhip with W-problems. An impor-

tant theorem regarding M-Pituations (Theorem 2.1 below) deals with the

existence of winning strategies in M-situations. Similar theorems will be

shown to exist for W-problems and Game-Situations (discussed in Chapter III).

These will be established by establishing W-problems and Game-Situations as

special cases of M-situations. To enable one to do this it is necessary

to i) set down the basic structure of M-situations, ii) to

put down the basic structure of W-problems and iadicate their isomorphism

with a special class of M-situations and iii) to set down the basic struc-

ture of Game-Situations and indicate their isomorphism with another

special class of M-situations. Sec. 2 will formalize the structure of

M-situations. Section 3 will elaborate the discussions

envisaged in (ii) above. The discussion of relationships between M-

situations and Game Situations will be relegated to Chapter II.

In Sections 4 and 5 some well known problems and puzzles will

be described as W-problems. In later sections, some methods for finding

solution' Lo problems will be discussed. It will be shown to what extent

these methods have been approximated by some solution methods used in

literature.
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2. Some Properties of m-Situations

In ChapLer I, the basic ideas underlying H-situations have been

clarified. In whaL follows some of these ideas will he made more precise.

As said before, this formalism is essentially those of Marino, although a

few minor changes havQ been made to bring them in line with the purposes

of this book.

An M-oituation Ia given by a 7-tuple < SC,DM, Sw,SL > where

S, C and D are abstract sets and SW and SL are disjoint subsets of S. M

is a subset of SxCxDxS with the following properties.

MI. (slc 1,dlS 2 )cM and (sl,cl,dls 3)c M implies s2 = s3.

This merely says that M is a function mapping a subset of

SxCxD into S. The reason it is not defined initially as a function is

because M is not defined for the entire set SxCxD.

Before the next properties of the relation M are introduced

another definition will be needed. Given an M-situation and an element

cc C one defines the set

Sc - (sI(d)(3s0)((s,c,d,sf)EM))

Similarly, for each member de D one can define

s d = fsj(ac)(ls')((s,c,d,s,)c M))

It follows from the definition that if (s,d,c,s')c M, then

se SonSd. However, in all M-situations it will further be assumed that

M2. If sc SOSd ther. (. ')((s,c,d,s')c H)

For convenience as well as for motivation, members of S will

be called situations; members of SW and L will be called winning situations

L ______________n
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and logIu& ILULu oA LespeCtively, inemberb of C wili be called controi

and members of D will be called disturban v. (e c,d,s')c M will often be

expressed by saying "8' is the result o' ly jg c and d to s" or by

(c~d)(a) =RI . MFpmhnrg of S will be cai.. 'ituationz to whirh ¢ frc

applicable". Similarly with Sd . Situations - which no contruI6 are

applicable, if not winning or losing situations, will be called daw

situations and denoted by SD.

A function

P:S-(SwUS1U sD)- c

will be called a control strategy if

P(s)= c implies se S,

A disturbance strategy is defined similarly

A winning strategy is one such that, no matter what strategy is

chosen by the disturbing influence, any sequence of applications of controls

and disturbances applied according to the strategies results in a winning

situation. One can express this formaliv as follows.

Given an element So4WUSLU SD , a control strategy PC is

called a winning strategy for a° if for every disturbance strategy PD

there exists a sequence (cl,d 1),(c2,d2),(c3,d3) .... (cn ,dn) such that

c 1; PC(a0 ), dI = PD(so);

and for each i (1 < i<n):

d = ((ci d)((c ). d.

d i+I  PD),.Citd i)((Ci-ll d i-i(...(cl~dl)(So) ...)

and

(C n~dn)((Cn-l' d nl)(...(Cl~dl)(So)..°. )c SW
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A control strategy PC is called a non-losing strategy fer so

if it is either a winning strategy or for no disturbance strategy PD is

it the case that there exists a sequence f(ci,dl) (1 < . < n as before)

such that
c = P(S d (S;

C1 -C' 1 D 0

and for each i (I < i < n)

el+ 1  Pc((ciidi)((ci.l,di.1)(...(cl,dl)(So)...,

di+I P D((Cipdi)((c,.,,dil)(...(Clpdl)(So)...);

and

(cn d n)((Cn-l' dn-( ...(cld 1 )(So) ...) SL .

A situation for which a winning strategy exists is called

a forcing situation. The set of all forcing situations is denoted by SF.

A situation for which a non-losing strategy exists but no winning strategy

exists is called a neutral situation.

The following theorem is of great interest. We shall state

it here without proof (a proof can be found in Marino's thesis).

Theorem 2.1. Given an M-situation, there exists a strategy

which is a winning strategy for every forcing situation and a non-losing

strategy for every neutral situation.

In the next section the definition of W-problems will be intro-

duced and related to that of M-situations. It may be worthwhile to men-

tion at this point, however, that the word "strategy" here has been used in

a somewhat specialized sense. Unlike its traditional usage in the field,

a strategy is not a method for searching for the solution. In a later

section this latter method is called a "search strategy". A strategy, as Lhf

6!
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term is used here, in the embodiment of the construction of a solution -

correctly or otherwise. A winntig &raLGy iv a vieLhod £or embodyLng t ie

construction of i "correct" solution. A search is really a method for

changing strategies as defined here.
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3. W-Problems and M-Situations

A W-problem is given by a triple <S,F0 T> where S is an abstract

set, T, a ubact of S and - a set of functions fro-m Gubsct. of S into S
0

f G F0 implies f;Sf -*S and Sf CS.

Given a W-problem and s c S, a winning solution for s, is a

sequence of functions fl,f2,..fn such that fic F for each i and such that

fnn(fnl (...fI(a)...)c T

A function

Q: U Sf - T -F
00

is called a W-strategy if and only if

Q(s) = f implies sc f

A W-strategy is winning for s0e S if there exists a winning solution f ,f2'

f such thatn

f, = Q(S0)

and for each i (1 < i < u)

fi 1 - Q(fi(fi-l (' "fl(So ) " ) '

Teo indicate the relationship between W-problems and M-situations

one needs a special class of M-situations which will be defined next.

An M-situation is called Eroblem-like if and only if

P1. D = (dT) , a unit set.

P2. se S for some c implies SL"

P3.S the empty set.

Given a problemi-like M-situation,
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R -I

R = S,C, (dt),M,SW,SL

one can define a triplet

Fk'R) ;=<S,F ,T >

where T and F is a sut of relations defined as follows:

f EF if and only if there exists a cc C such that for all a, a' ( S

(s,sl)c f if and oniy if (s,c,d',s')E M.

It is not hard to see that P(R) is a W-problem. S is an abstract

set, and T is a subset of S. Each element fe F is a function since

(s,s')c f and (s,s)6 f implies (s,c,d',s)c M and (s,c,d',s'')e M

for some unique c whence by M1, of = a". For each ce C there is a function

fcc F and these are the only members of F . Also Sf = Sc" This can be
C

seen by noting that se Sc implies (due to the uniqueness of d') sc S c Sd,

whence by definition there exists at such that (#,c,d' ,s')c M whence f is
C

defined for s; provLng Scc Sf . Similarly, if se Sf , then there is An st
C c

such that (s,c,dls')c M whence se S€ .

Given a W-problem

P =<S,FoT >

one can define a 7-tuple

R(P) =<S,C, (d'), M,SWSL>

where

SW =T,

SL S- U Sf- SW
f c F If' 0

and C and M is composed as follows:

For each element of fc F there isan element cfE C and these

are the only elements of C. Also

F
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(3.cfd',x')c M if and only if f(a)

R(P) is a problem-like M-situation since S and C can be

taken to be abstract sets, 0 = (d'j satisfying Pl. Sw and S are di:-
La

Joint subsets of S by definition, Mi followe since f is a function for each

Cf. M2 follows also since from the uniqueness of d', se S implies and

(trivially) is implied by sc S nSd', Since it can also be seen quite

eaiyta f = f Ic se 5 cf also implies the existence of 91 such that

f(s) = a' leading to (s,cf~d',s')c M. P2 can be seen to be satisfied since

aC S shows s cS - CU S i,e. si cYC Sc proving the contrapooitive of

P2. To prove P3 one notices that

SD cc S cC Sc L" SW an L e $-cC Sc" SW.

In what has gone above, two mappings have been defined, one

from H-situatians to W-problems and one from W-problewn to M-situation3.

In what follows ic is shown that these mappings are one-one and inverses

of one another.

Theorem 2.2. For all W-problems P and problem-like M-

situations R

P(R(P)) = P and R(P(R)) R.

Proof:

Let P = < S,F0 ,T >

R(P) = < SC'M,T,S - U Sc- T >
cc Cc

and P(R(P)) = < S,F 0,T >

It is only required to show that F° W F'

Let fe Fo; then by definition of R(P), there exists a cf E C

such that Scf Sf and f(s) = a' if and only if (a, cftd',s')cM. By
f

construction of F', there is an clement fIc F' such that S S and
o ft
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f'(s) u' if and only if (a,cf, d' s'), M. Hence fl = f showing that

o - Fo . Thc reverst: inequality follows similarly proving that F° t F

Let nuw

R = *,C, (d' ),MSWSL>

P(R) --< $,Fo's W>

and R(P(R)) =< S,C,,dJ .,.Sw ,sL>

That C = C' and M . Mt will follow from definition as in the

previous case. To show that S = S', it is recalled that from P2 that
L L

Si. SL implies s U S or s - s However, since SL are W
L c CC L' S cY c- S

are disjoint.

SU c S S--sSL=$"SW- S cc c " S

Again, since by P3 U
SD =S c c C L L

one has
sL =s - oU sc  w =s
L-S cUCC ScSW SL

proving the reverse inequality.

The R and P functions demonstrate that problem-like M.

situations and W-problems are identical structures. However, they do not

establish that the concept of a winning strategy as defined in the two

structures are identical concepts. To show this one introduces another

definition.

Given a W-problem P and a W-strategy Q for P, one defines a

function R(Q) from a subset of S into C as follows

R(Q)(s) - cf if and only if Q(s) = f.

It can be verified that R(Q) is a control strategy for R(P).

R(Q)(s) - cf implies Q(s) = f. Since Q is a W-strategy, this implies

BE Sf whence se Sc showing that R(Q) fulfilla one condition for being a

f m f.
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control strategy. To show that the domain of R(Q) is indeed S-SW-SL- D',

one notices that the domain of Q is U S

whnc fC fSW cYC Sc'w' O

L cC C
whence

SSL cC c SW

whence 
L C

S -LSW = C

Since SD = * the domain of R(Q), which coincides with the domain of Q is

indeed S-SW SL-SD.'

One can now state and prove the following theorem, which is an

important step towards the establishment of the analog of Theorem 2.1, in

the case of W-problems.

Theorem 2.3. Let Q be a W-strategy for the W-problem P. Let

R(Q) be the control strategy for R(P) as defined. TheaQ is a winning W-

strategy for s0 if and only if R(Q) is a winning control strategy for so

in R(P).

Proof:

One initially notices from the construction of M that sir S' if

and only if sE Sf for some fc F Hence every disturbance strategy PD has

as its domain U Sf-S W and = d' for each a in this domain. This,

then, is the only possible disturbance strategy.

Let now R(Q) be a winning strategy for s0 in R(P). Then there

exists a sequence of contcols cfigsf2P...cfn such that

Cf R(Q)(s o)

and for each i < n
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C~ l  R(Q) ((c ild )("cf Od

a nd 
i 

I
(cf ,d')(cf ,d'c((..(cf d')(5o),..)c SW

This indicates that

fn(fn~('£(o
' '

n-l .. fl~g)o..

ind

f Q(fi-l" I(s 0 ). .. ) for each i < n.

Thus Q is a winning W-stratogy for a° in P, The proof that R(Q) is a

winning strategy for a in R(P) if Q is a winning W-strategy for s in

P follows in exactly the same way. It can also be shown that any strategy

in R(P) is R(q) for some strategy q in P.

One can state without proving that if there is a winning solu-

tion for a0 in P then there is a winning W-strategy for so in P. One merely

associates f1 with s0, f2 with f1(a0 ) and so on; the rest of the situations

have any value for the strategy.

Let T' C. S be the set of all situations in a W-problem such

that sc T' if and only if there is a winning solution for a. Hence there is

a winning strategy for each element of T' in R(P). Hence each element of

T' is a forcing state in R(P). Also, each forcing state in R(P) is a member

of TO.

The important thing to note here is that by theorem 2.1 there

is a strategy R(Q) in R(P) which is a winning strategy for each se 1'.

Hence there is a W-strategy which is winning for each element ac TO. This

fact yields some solidity to a rather meaningful theorem that will be Indicated



- 39 -

later. In the rest of this chapter some proceanen for finding winning

strategies will be discussed, To rmake this diacussion meaningful, th next

two sections will introdt ir two problems that have been discussed In

iiterature and ahow that theee can bc formalizad as W-problemo.

eI
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4. A Simple Example of a W-Problem: The Tower of Hanoi.
_ _ I

In the present section and the next, two problems will be

discussed as W-problemns, In addition to motivatinu th .e U n m.5,

these would also sarve in future sections to illustrate some ideas developed

in relation to solution zethods. There will also be occasion to indicate

how _ome of these idcag ara inherent in methotds describcd in Artificial

Intelligence literature.

This present section will be devoted to describing the cele-

brated puzzle called the tower of Hanoi [U ,12]. The puzzle is generally

described as follows.

One is given a set of n disks (n may be any number: folklore

attaches the value 64 to n; we shall exemplify our problem with smaller

values). These are of unequal diameter. There are three long pins fixed

upright on a board, Each disc has a hole in the center large enough to

pass any pin through it but not large enough to pass any other disc through

it.

Initially, all the discs are on one of the pins. They are

arranged with the largest disc at the bottom and the smallest disc at the

top; each disc rests on a larger disc. It is required to transfer all the

discs to another pin by moving one disk at a time from one pin to another.

The constraint is to be observed at all times that no disc should ever

rest on any disc smaller than itself. Also only the discs at the top

position in any needle can be moved, The initial configuration is shown

in Figure 2.1, to clarify the description given. n has been taken to be

6 here. However, the value of n will not play any essential role in the

formal representation of the problem.



.

1~ -41-I

Figure 2,1. The Tower of Hanoi

------- -- - - - - - -
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To represent the Tower of l1anoi problem as a W-problem one

IImay specify as foliws.

Each element of S coustaLs of a sequer,;e of three sequences
of integers

6c C 5 Z a= <(x 1x02..x0i0)$(XllX12..xlil),(x2 x2 ... x2)>

These three sequences have the following properties:

HI. .0 F i1 + 12 = n

(i.e., there are a totality of n integers in the three sequences, each

integer standing for a disc).

H2. x = xt only if i = s, j t
ij a

(i.e., the integers appeazing in the sequences are distinct)

H3. l<xij <n

H4. For each i, j > k implies xii > xik

(i.e., largee integers appear after smallur ones in each sequence:

smaller integers stand for larger discs)

The set F consists of 2n functions, to be denoted by theo

generic name (k,m) where 1 < k < n and m = +1 or -1. The move (k,m)

is the formal analog of moving the k - disc (in the order of size)

from the top of any pile (or pin) either to the pile to the left or

the one to the right depending on the sign of m. The domain S of
(k,m)

the function (km) is defined as follows:

115. <(x 0 1 ,x0 2 ,..xoi ),(xll,x 1 2 ,...xli ),(x21,x221 ..x21)>
0 2

is an element of S if and only if either xi k or x1l= k or(k,m) 10111

x 1= and if x k then k > x where t = s + m (mod 3). The values
21,.2Sit

of the functions ar- given as follows.
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H6. If = (x0 1 , . ...X ),(X11 ,X1 2 ... x li ),(x21 ,x22 ... x 2 1 )

"iR n the rinmain f And k - j - -0 1,2) then

(km()= <(x81, ,2,"."x~ho),(xi 1,x 2,....xil) " 2>
02-Oi)(hx2-x 1 2

where

it = it'-l if t = j; i' = it+ 1 if t = j + m (mod 3); i = it otherwise.

Also

xtl = xt, except when t = j + m (mod 3) and i = i

xi = k when t = + m (mod 3).
t

H7. T is specified to be the unit set consisting of

Interest will be centered on specifying a winning solution for
<(Il, ... n)., 0, 1>.

As an example of a solution of the problem when n = 3, let us

consider the following sequence of moves. The smallest disc is moved to the

right pin, the second largest disc is tuoved to the left pin; the smallest

disc is then moved right (from the right to the left pin "around the circle")

to the top of the second largest pin. Then the largest disc is moved to

the (now empty) right pin, the smallest disc moved right to the original

(now empty) pin, the second largest disc is moved left (around the circle)

to the top of the largest disc on the right pin and the smallest disc

moved right to the top of the pile.

The exhibition of this sequence of moves is formally equivalent

to the statement that when n = 3

is a solution, since
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(3,+1)((2,-t)((3,+i)(< 0,+I)(,((2,) (<1>,,())4>))

(3, +l) (<(3-( , ) (I ,2)

< ,(, 3+2,3),t>.

In a later section a winning strategy will be pointed out which

yields this winning solution. Meanwhile, the next section will formalize

the problem of finding proofs in Propositional Calculus. For this purpose

the Russel-Whitehead version of the propositional calculus will be used,

following Simon, Newell and Shaw.

I
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5. The Losic Theorist -Another 8xampie ,

As an introduction to formalizing the problem of finding proofs

in propositional calculus as a W-problem, the exact model used in the logic

theort!t will bc discus;cd hcre. TIis examplc will indtcate the -tivation

for considering W-problems to have a possibly infinite Fo, as has been done

in this book.

A. in the literature, the alplabet of the propositional calculus

will consist of the following:

1. An infinite set of propositional variables, whose members

will be denoted by lower case latin letters with integral subscripts if

necessary.

2. The symbols #,),V, V and -*

Well-formed formulae (wffs) are defined in the usual way as

follows:

a) Any propositional variable is a wff.

b) If A and B are wffs, then VA, (AV B), (A -.B) are wffs.

It is understood that A and B above are meta-linguistic variables

standing for wffs. Also, in keeping with literature, parentheses may be

dropped when exhibiting a wff, it being understood that the resulting

strings of characters are shorthands for wffs rather than wffs themselves,

A subset of the set of wffs is defined as the set of theorems

as follows:

0. The following (called axioms) are theorems

(i) ((p V P) - P)

(ii) (p -4(q V p))

(i~ii) ((p V q) (q V p))

(iv) ((pV(q V r)) -4 (qV(p V r)))

(v) ((p .q) -4 ((r V p) (r V q)))
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1. If A(p) is a theorem in which the specific propositional

variable p occurs, and B is any wff, then A(B) is a theorem, where A(B) is

obtained from A(p) by replacing every occurence of p in A(p) by an

occurence of B. This is the usual substitution rule.

2a. If (uvA V B) occurs anywhere in a theorem C, then D,

obtained by replacing this occurence in C by (A - B), is also a theorem.

2b. If (A -*B) occurs in any theorem C, then D, obtained by

replacing this occurence in C by (owA V B), is also a theorem. 2a and 2b

are applications of the definition of"implication" in terms of "not" and

"or".

3. If (A -4 B) is a theorem and A is a theorem, then B is a

theorem. (The usual modus ponens.)

On the basis of these definitions, one can set up a W-problem

as follows to represent the problems of finding the proofs of theorems.

Each situation a is a finite sequence of wffs (91,S2,.-..sn).

These wffs stand for the set of theorems proved at a certain stage of the

proof procedure.

F consists of four classes of functions, denoted by

(i) (i, A, B,l) where i is an integer, A is a propositional variable

and B is a wff, (ii) (L,J,2a) where i and j are integers (iii) (ij,2b)

where i and j again are integers and (iv) (i,j,3) where i and j are integers.

These stand for substitution, tne"forward" and "backward" application of

the definition of implication and modus ponens respectively. Formally,

these functions are defined as follows:

(i) (Substitution) s (l's2,.' n) is a member of S(i,A,B,l)

if and only if i < n and the wff si contains the propositional variable A.

In this case

I1
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(iABl)((al's2"" S)) = (slsj2""Sn'sn+)

where sn+1 is obtained from s by replacing all occurences of A by B.

(ii) (Definiti:n-Application) s . (s11s21 ... an ) is a member

of S(ij,2a) if and only if i < n and there are at least j occurences of

wffs of the form (etA V b) in s9. In this case

( i J 2a ) ( (s l qs 2 ,. .. n) si t a S2 .. s , n

where s n+ is obtained by replacing the jth occurence of OvAVB) in si by

(A -4 B).

(iii) (Definition-Application) s = (sl~s21...Sn) is a member

of S(ij,2b) if and only if i < n and there are at least j occurences of

wffs of the form (A -+B) in si. In this case

(i,J,2b)((sls 2 2..,s) = (slS2,...SnSn+ )

where sn+l is obtained by replacing the jth occurence of (A --B) in si by

(-A V B).

(iv) (Modus Ponen) s = (Sls2,...sn) is a member of S(i,j,3 )

if and only if ij < n and for some wffs A and B, si is (A -*B) and s is

A. In this case

(i,J, 3)((Sls 2  ....n) = (Sis2, .. nsn+l

where sn+l is B.

In (ii) and (iii) above the occurences of the sentence of the

form OwA V B) and (A -B) are ordered by the occurences of the main connec-

tives of these sentences, reading from left to right. As an example, in the

wff

C = (QvvaV(a -b))V(c -4.(wd Ve))) -f)
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1-1 -L'A.fit Cu-iUi:Ai~ uf 4 Wf'f of Lim fui~ia (%4~ R ) is (& V.(+i li)); Lhe

second occurence is (so(l.V (a .-#b))%f (c -+ (vd V e))), the third occurence

is vd V e). Similarly the first occurence of a sentence of the form

(A R j@ (A -... )! thp ua..nrd nr~iec is 4d V ON- the third

occurence is C~ itself. Hence if the situation s consists of the single

element C, then

while _.

Finding a proof of B from the suppositions AlA 2 ,I, A k (i.e.,

showing AA 2, .. .A k I B) would correspond to the following W-problem. a i

the sequence (AA 2, ...AkIXlIX 2 ...X5) where X1 ,x21 ..x5 are the five axioms.

T consists of the set of all sequences of wffs containing B. A winning solu-

tion would be a sequence fJ.'2'**f of functions such that the sequence

As an example, the winning solution of the W-problem corresponding to a

proof of ((p ...g.p) -4,p) from the axioms (k(p -iAPp) -+ Pjp)) would be the

sequence(l,p,.mp,l),(6,l,2a)

This can be seen as follows

(6,l,2a)((l,p,#op,l)((((p V p) - p),(p -~(qV p)), ((p V q) -~ (q VP p)).

((p V(q V r)) -(q V(p V r))) ((p .-q) -((r Vp) -(r Vq))))))



- 49 -

(6,1,2a)((((p V p) -p),(p -(q ' p)),((p V q) -(q V p)),((pV(qV r)) -I

(qY(p V r))),((p .q) - ((r V p) --<r V q))),((vpV*. p)p-P)))

(((PV P) -P),(p -. (qV p)),((pV q) - (q Vp)),((PV(q V r)) - (qy(pvr))),

((p -,q) , ((r V p) , (r V q))),((wpVwop) -44-p),((p-4,p) -W)).

The last sequence contains the theorem to be proved as its last element.

Two examples have been given, in this section and the previous

one, of the representation of two problems as W-problems. In the next few

sections various properties of winning strategies will be discussed.
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6. Strategies ad their Description

It is clear irom the discussion in Section 3 that the solution

for a W-problevi can be found it a winhing W-strategy is known. The idea of

a strategy has bern irherent in many works in ArtlitLu±l Intelligence.

However, the mere giving of a prccirc forw to Lhis idea does not 3hed any

light on the basic question, "10ow is a winning strategy to be found?" In

later sections various devices will be suggested for the finding of strategies.

Of course, these dc-vices in their turn will need the knowledge of othur

functions or sets. These again, will have to be "found" for any given

problem one is faced with. These are introduced in the hope that some of

these will provi easier to deduce from the description of the problem or

from "experience".

In this section attention will be given to a different, no less

cruciAl problem. "Even when one knows a strategy, how can one make sure

that It is easy to implement?" That is, in what form is a strategy to be

represented in memory? Evidently, the strategy cannot be stored as a huge

set of ordered pairs. It is essential that a small set of tests be specified

to the computer. The value of the strategy for a situation (the control

to be chosen) is determined on the basis of these tests. As can be seen

from our discussion in Section 3 of Chapter I, this is essentially a prob-

lem of description of sets. The details of this latter subject can only be

discussed in a later chapter. For the present it will be assumed only that

some subsets of S are "easier" to describe than others, It will also be

assumed on the basis of the discussion in Chapter I that it is of use to be

able to find a common description for all situation in S which yields the

same value of the strategy.

Given a strategy Q one can define the following relation E on

L S T
f F 0 f
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(sis 2) E if and only if Q(s1) = Q(s2)

Clearly, this relation is an equivalence relation. This relation is pre-

cisely the relation QoQ (the composition of Q with its inverse relation)

and hence will be called the Kernel of the strategy Q, following algebraic

terminology [13).

The Kernel of a strategy partitions the set UoS- T into

disjoint subsets called its equivalence classes. For a strategy to be

practicable, each subset in this partition is to be easily describable.

For future purposes, the symbol Q -(f) will be used to denote the set of

all points a such that Q(s) = f. This, again, is standard algebraic nota-

tion. It follows immediately from definitions that

f I f 2 implies Q' (f 1)1 Q1 l(f2) 0
and

U Q U S-T
f F fc FO f

A particularly easy description for these sets exist for the

Tower of Hanoi problem. This will now be set down in the way of an

example.

It will be recalled that in the Tower of Hanoi Problem of

Section 3, a situation consists of a sequence <sl,r2,s3> where each

si (i = 1,2,3) is a sequence of integers with certain properties. It

will also be recalled that the controls are denoted by ordered pairs (k,l)

where k is an integer and £ = + 1. S (ke) the domain of (k,i) have been

previously defined. Also, it has been pointed out that there are n elements

in the union of sl, S2, s 3, considered as sets. One now defines a strategy

as follows:



F'k
1>- 5z -

ii( :) - ("- ,(- ~k4l) if and oniy itj

i) s / <,(l,2,3,...,0 > and

r,_ 3L "(k,(-l) ) and

k+i for any i < k.

Since in the case of the Tower of Hanoi fUFS S, the domain j
of P ought to be S-T which it is, by condition (i) above. Condition (ii)

assumes us that the strategy always chooses an applicable move, That P is

indeed a winning strategy for so = <(1,2,3,...,n),0,0 > can be verified

in the case of n 3, as follows:

P(<(l,2,3),0,0 >) = (3,+l)

and (3,+l)(<(I,2,3),0,0>) (1,2),(3), 0

and (2,-l)(<(,2),(3),0>) <(l), (3), (2)>

P(<(l),(3),(2)>) = (3,+I)

and (3,+1)(<(l), (3), (2)>) = <(l), 0, (2,3)>

P(<(1), 0, (2,3)>) = (1,+I)

and (l,+l)(<(l), 0, (2,3)>) = <., (1), (2,3)>

P(<V, (1), (2,3)>) - (3,+l)

and (3,+1)(4 , (1), (2,3)>) = <(3), (1), (2)>

P(<(3), (1), (2)>)= (2,-1)

and (2,-l)(<(3), (1), (2)>)= <(3), (1,2). 0 >

P(<(3), (1,2),0 >) = (3,+l)

and (3,+I)(<(3), (1,2), 0 >) < 0,(1,2,3),0 >

The last situation is a winning situation. It will be noticed

that the strategy P has yielded the same solution as was exemplified in

Section 3.
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It can be shown by induction that P is indeed the winning

strategy for (<(1,2,...n), 0,0 >) for all n. This will be indicated when

the concept of subgoals is discusscd later. It iiwy be pointed out that P

is the winning strategy for all states, However, for some aituationq tt

may not yield the "shorLeut" olution in the aensa Chat for theset situationS

one can find solutions as a qhorter sequence of controls by violating the

strategy P. There are, again, other strategies for the Tower oi Hanoi which

are winning strategies only for some situations. There are others which

yield the shortest solution for all situations. At present, it is not

proposed to discuss these various strategies. It is, however, worthwhile

pointing out at this point that the strategy P discussed here has been

defined mostly in terms of statements which are needed for describing the

problem itself. Only the concept of taking the powers of -1 was not a part

of the concepts used in the description of the rules of the game. The

others - the descriptions of 6(k,,) and the concept of one integer being

less than another - were inherent in the description of the problem. Free

use was also made of logical quantification it% defining the strategy but

these were used also in the description of the pr olem. The significance

of these facts will be discussed when the basis for description languages

and their use in problem solving has been made clearer.

The present section will be closed by pointing out an important

consideration regarding the search for a practicable strategy. In many

real problems one needs winning solutions, not for all possible situations,

but only for a few situations. By the Marino theorem and Theorem 2.3, there

is a winning strategy for the set of all situations for which a winning

solution exists. However, it may be more advantageous to find a .ess

"ambitious" strategy; one which is a winning strategy -- not for all possible

I



situ tuns but only tor those situations for which a aiuti'.n is no-dwd.

This will be clarified liough a theorem, To introduce the theorem one

ilteds the following definition.

Given any subset sI - T' let S1) denote the set of all

strategies which are winning strategies for every element of SI, that is

Pj P (SI) if and only if for every sc Sl, P is a winning strategy for s,

Thtiorem 2.4 if Cs 2 C 9' the I S )  2)

Proof:

Let P ?(S 2). Then P is a winning strategy for all elements

of S Since each element of S1 iF an element of S2, P is a winning

strategy for every element of Si. That is, PciS 1 ).

That I(S 2 ) 0 follows from Theorem 2.1 which states that

P(T) 0 and that P(S 2 )_P(T)

The theorem gives us no assurance that if S1 is a proper subset

of S2 thenTS2) is a proper subset of'3Sl). This is in general not true,

either. However, there are many cases where choosing a proper subset of a

set of situations yields a larger set of available winning strategies.

Let there be some evaluation function which asaociates with

every subset of S a number which yields the "ease" with which it can be

described. Then with each strategy P we can asho ite a set of numbers

each corresponding to tne easc with which an equivalence class of its

Kernel (PoP 1) can be described. The minimum of these numbers can be ue* 4

as a measure of the "ease" with which P can be used. Associated with each

aubset S1 of T , then, is a set of numbers, corresponding to the ease with

which each strategy in P(S1) can be used. Let the minimum of these be

I.
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it is not hard to see that SI CS2 implies E(S1 ) . E(S2), If it is required

to find a winning strategy only for all elements of S1, it never increases

the eeee of applying a strategy by choosing on -which is a winning strategy

for a set larger than S1 .

The above givEs plausible arguments for restricting ones

ambition to find a winning utrategy for the smallest set of situations one

can "get away with". The arguments certainly are not rigorous. It has

been assumed that all sets of numbers have maxima. It has been assumed

that "eese" can be measured by numbers or at least by a linearly ordered

set. It might be interesting to investigate the effect of relaxing these

assumptions on the validity of the arguments. This will not be attempted

here.

The ease of describing a strategy is only one of the problems

associated with the concept of strategies. The:e still remains the problem

of finding a strategy. In the following sections it will be pointed out

that a winning strategy P can be found if certain subsets of S (other than

the equivalence class of PoP-) can be easily described.

re



E taii:tnrs A '.erhod tor DutiIting Strategies

All the previous discussions in this Chapter lead to one i. or-

tant conclusion so far; to wit "In a W-problem, a winning solution for a
0

can be found if one knows the description of the equivalence classes of

the Kernel of sowe winning strategy for s". In the rest of this chapter,

some similar statements will be made and proved where the words "the

equivalence classes of thn Kernel of some winning strategy for a o" will be

replaced by the names of other classes of sets. A posteriori, these also

yield methods for constructing winning strategies for So, and these con-

structions will be discussed, The problem, "Given the definition of a

class of sets, how does one construct their description?" will not be dis-

cussed till after description languages are introduced in Chapter IV. Unfor-

tunately, even there the discussion will have to be sketchy.

A class of sets that readily comes to mind arises from one's

desire to know how "far" a situation is from the "nearest" winning situation.

This can be formalized by defining an enumerable class of sets Ti as

follows
T =T

0

and for all i > 0

Ti+ 1 = fs k T and (1f)(f e F and f(s) c Ti)

In words, a situation is in Ti+ l if and only if there is a con-

trol which moves the situation to one Ti and no control which mnves it any

"closer" to a winning situation. The "distance" of any point from the winning

situation is the minimum number of steps of elementary controls which changes

it to a winning situation.

It is clear from the defiLition that 1 0 j implies Till T - 0.

For assuming (without less of generality) that j < L, one can obtain from
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detinition Tc s - V, T. . f . I. On fria a ;n Pee 'hat:

Theorem 2.5 In a W-problem ougQl( if and only if sltT or a winning

solution exists for s
C

Proof:

One notes initially that s j O Tk and (3f)(f and f(s)

STI) -4 Sri+1 or

£(if)(f fF o and f(s) eT 1 ) -((a d kUO Tk) -.sc Tt 1 )

or
i

(2f)(f eF o and f(s) c Ti)-( C U T or c T

L+1
( f)(f F and f(s) T) - Le

M f ie F Ok = O k
from which one obtains

i i+1
(-f)(f e v and f(a) e kJo k) . s U Tk.

0 k=O k) k=O k

One now proves by induction the following (yielding a stronger

statement then the "if" part of the theorem),

iff (f (... f(so)... I c T then o  U T. For n lonen n-1 0o 0 La C*
obtains f(s) c T w To yields a c U T

0 k=O k'
Let the the^-v.Abe ture for n w i that s, as.ui.c f

( . T yields so  ka Tk" Let f ( (( T consider

fl (so) C al. One has

f +l(f (.,.f2(sl).. .
i

yielding by induction hypothesis 1 c U T Since fU(o) =  e U T
k= 1 k Sie' k=O k
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proving the theorem for all n.

To prove the converse, let a0 eUTi. Then there exists an n

such that s, e T The proof will be by induction on n, as before that

either n * 0, or there exists a sequence f "... f of functton o such that
n 0

fl(f2( ...fn(so)) T. Let n - 1, then by definition there exists f, C Fo

such that f1 (so) T.

Assume as induction hypothesis that if #i, t,, then for soe V
fl.... '

ft(f(.f.fL(3o)) T.

Let s 0 T Let fi+l(•o)it Ti hence there exists a sequence of functions

f '"If such that

f (f2( .fi(fi+(so)...) T

proving the theorem for all n,

The class of sets (Ti) will be called evaluations.

A SLrotegy Q will be called an Evaluating Strategy if and only if

s j Ti implies Q(s)(s)e T 1.

The following theorem is a special case of Theorem 2.1, relevant

to W-problems and hence to problem-like H-situations and establishes that
U T. T'.
L>O

Theorem 2.6 An evaluating strategy is a winning strategy for every member
of iVoT,.



- 59 -

Proof:

Let a ct> Ti; then for same n, a C Tn , n >0.

If n m 1, then q(s) () cT showing that Q is a winning strategy

for T.

Let Q be a winning strategy for all a c T. Let a e T+ 1 , then

by definition of Q

Since Q is a winning strategy for Ti, there exists a aequence f,, f2" "'fi

such that f 1 (f. 1 ... f l (Q(8) (9))...) c T; and

fk = Q(fk-l(... ( ( )(S) ) ' '..') for each k < i.

Hence Q is a winning strategy for s.

The next theorem shows that one can make the following state-

ment, "Yf there is more than one evaluating strategy, then it is unnecessary

L-1 use any one of them consistently to arrive at a solution". Vormally,

it can be stated as follows.

U sf -(.%) q}b asto
leorem 2.Z Let (S ) be a partition of fF - T. Let be a set of

evaluating strategies. Let K: (SU) -% ) associate a strategy with each

class of the partition. Denote by K(S,)/S the restriction of K(S ) to

S,1. Then K(S, )/S, is an evaluating strategy.

Proof:
Let a. ThenU K(S )/S(a) K(S )(s). Lc S )

a Cz or Ix
an evaluating strategy if s c Ti, then K(S,)(s)(s) r Ti. 1 . Hence for all

s eTi,
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proving x(S )/S is an evaluating sttategy. That dnemin of UXK(S )/9 iR

as required for a strategy follows for the definite of (S).

In view of this theorem, it is now not necessary to know the

description of the equivalence classes of the Kernel of a specific evalki-

ating strotegy to apply it, All one needs to know is that some evaluating

strotegy is being applied. To assure oneself of that, one needs to know

the descriptions of the otts T instead. Knowing these descriptions, one

can find a winning solution for a by finding out that s c T1 and obtaining

h%

control f C F such that f(s) c T 1 1. If F0 is a tractably small set, this

can be done by enumeration. The resulting sequence of applications of con-

trols will be according to some winning strategy and yield a solution. If

F be infinite, there is no claim that thia met'od of constructing winning
0

situations is in any way realistic.

K!

I,
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8. Strateaa Stied on T1

Thi construction of evaluating etrategies depend strongly on

having available the description of each net T in an evaluation In some

special cases, it may be possible to develop a strateqy with a much smaller

repertoire of descriptions. in whet follows a tathod for strategy-construction

will be discussed which merely needs a description of T'.

Given a W-problemu (, F, T> one can define a rdlition V on

S as follows

AK'b if and only if for some f e.Fo, b a f(A). Let K be

the transitive closure of K1. K is the property that if aKb, then one

can change situation a to situation b by the successive applications of con-

trols.

A W-problem will be called Progressively finite if and only if

Fl. K is irreflexive, i.e. no situation a is such that

sKs (no "looping" is possible).

F2. There is no infinite chain a,.$2's3, , such that for

each i LKui+1

Fl effectively says that each action takun on the way to solving

a problem is "irrevocable". In a way this is a very comfortin- jitu. Aon,

since no matter how "blindly" one applies ro-rro!. nre never geti "caught

•loop".

F2 essentially says that the process of applying controls always

reaches a "dead end". This prevents one "going on forever" on an "oppn-

ended loop".

Neither the Tower of Hanoi problems nor propositional calculus

described in Sec. 4 are progressively finite. There will be occasion to

exemplify the analogs of progressively finite problems in the next Chapter

a _ _ __ _ __ _ _ .__ _
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whei the game of Him is discussed., For the present only soe formhal proper-

tlz f pra~r&zz zl flaitQ pzabl= will ba dizcuzacd.

K, being a irreflexive and transitive is necessarily anti-

symetric. Thit to, it h the two essential properties of a partial order,

Every chain in this order, boing finite, hat a lower bound. Hence the

,aet of situations have a set of minimal elements.

The moat useful thing about progressively finita&W-problems is

that a deseription of T and (as & part of the prolUle specification) T it

all that is needed to conatruct a winning strategy. To see this, one can

define the following kind of a strategy,

A strategy Q. S - T -4F 0 is called cautious if and only

if

a c TO implies Q(s)(s)e TIL T

Evidently, since every evaluating strategy is a cautious strategy,

cautieum strategies exist. However, the important thing to note is that every

cautious strategy is a winning strategy, whether it is an evaluating

strategy or not, as long as the problem Ls progressively finite. ThLs can

be seen in terms of the two following theorems.

Theorem 2.8 Leotj be * progressively finite Wi-problem. Let S be the set

of minimal elements of K. Then So - T _ S - TO.

Proof:

e C S if and only if there is no f €F 0 and no #' S such

that fts) ., Hence

s o =S - U Sf

This leads to
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f~ f rF . -r

0

Theorem 2.9 In a proreisnively finite W-problem every cautious strAtogy is

a winning strategy for every element of TO.

Proof:

Let s T' and Q a cautious strategy, Define a sequenre sit of

situations as follows:

0

+ Q l (si)(si) for all i.

It is clear from the definition that for all i, siKs+ 1 . Hence

the sequence fsi is finite. Let at be the minimal element of this chain.

If sic T for some i < t, then the sequence Q(so),Q(sl)...Q(si.,)

is a winning sequence showing that Q is a winning strategy for so0, If

a j T for all i < t, then, since Q is a cautious strategy a, F T' for all

i < t. Hence at C T' in particular. However st C So, being a minimal

element of K. Also at j Twhweat e So - TC S - T' by theorem 2.7 which

contradicts aEt c T.

It can be stated in a way analogous to the diacussion at the

end of the las.t section that for applying a cautious strategy, the descrip-

tion of the 'uivalence classes of its Kernel need not be known. If one

has a situation s f T' and chooses f € F such that f(s) r T', one knows0

that some cautious strategy is being applied. To provu this rigorously one

would have to prove an analog of theorem 2,7. This appears straight-forward

and need not be belabored here. Indeed, some may even argue that all this

pA
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"rigorous rigmarole" (even if it -S considered rigorous -- there are many

small points slurred over in the discussion) does not yield any results

that one could not be gleaned intuitively. Indeed, most rigorous discussions

often take piece only after some intuitive basis for them have been suggested.

However, rigor has the advantage that through it one can clearly see the

conditions under which the intuitively obtained results are valid. This

gives - clearer insight into huw ia intuitively feasible operation may be

improved when it is found to be unusable in realitl. In our discussion of

the General Problem Solver in the next two sections we shall endeavour to

explain the many reasons for the occasional failures of the GPS.

I
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9. Strategies Basaed on Subj 4 -- the Ganaral rroblem Solver r141

To discuss methods based on subgoals, it will be necessary to

discuss evaluations based on sets other than T One of the subgoal-types

used in the GS is "Apply operator f to aituation s". This is a trivial

operation if * c Sf. Otherwise, one sets up the subgoal "Transform s so

that f can be applied". This is equivalent to solving s new problem, with

S and F the same as bcfore but with T replaced by Sf. Any solution for

this new problem may be discussed in terms of evaluations. It is probably

not essential to use the idea of evaluationc. However, at the present

level of the author's understanding, any concept more general than evalua-

tions is apt to be hard to handle. Moreover, workers using the idea of

subgoals often have the idea of "reducing differences" implicity in their

argument. So the use of evaluation as a cornerstone of the theory of

subgoals will probably not be an inherent limitation on the way workers

in the field interpret the term "subgoals".

Given a W-problem and a subset X C S one defines a class of

sets Y, ,s follows

X0 =X

and for all i > 0

i

X i~ 1 =fs~s U X and (4f)(fe F(, and f(s) c Xi)I

As in section 7, we shall denote U X by X'.

One now defines a set of subsets (SfX) fc F of X', indexed

by F0 , as follows

s E SfX iff for some i > 0

4



a CX and f(s) f X~ The (S) -6 are not necessarily pairwise dis-1
0

joint. However fU X. The class of sets (SfX)f is a cover,
n C F°  0fX F 0

rather than a partition on X'.

The GPS sets up the goal "Apply operator f to situation a" in

view of the recognition of certain differences between the winning set

(either T or S for same ge F). The extraction of this difference does

not assure that a S. For the purposes of the present discussion the set

v 0 will denote the set of all situations s such that if the sub.p-oblen is

"transform s to X", the the subgoal,*apply f to x" wili be set up.

Although the GPS is a scheme for directed search for solution,

one can envisage 'ifference tabljd' in GPS which give rise to miniW':e search.

A GPS-like algorithm will be quoted late in this section which would be

effective on such an optimal decision table. Our main puraose in this

section willbetset up certain conditions on the structure of the difference

table (the sets SfX) which are sufficient for the successful convergence

of that algorithm. The sufficiency will be exhibited with a series ot

lemmata. Later on there will be occasion to discuss how one can make

modifications of the given algorithms to an exact replica of the GPS. It

will be indicated how the convergence can be assured even for a slight

relaxation of the axioms on S0  The axioms regarding the sets S will
fX"

make explicit certain assumptions which are either tacitly made or hoped

for in literature about the difference tables. It is considered useful

to bring these "out in the open".

One assumes initially, of course, that the difference table is

such that if a situation can be transformed into a winning situation, the

difference table will indicate some transformation for it. This is re-

flected in axioms Dl and D3 below. Also, if a certain transformation is

I .. .. - - ..
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IsLvLeLd, then if the transformstion is aptiabie, the "distance" between

the situation and the winning states is actually reduced. This is indicated

in D2 below. This reduction may be considered inessential and it may be

possible to prove convergentce for a more relaxed condition: for the present

this assumption is made as a member of sufficient condition# only.

Another important assumption (which, perhaps, may also be relaxed) indicates

that if the application of a certain transformation f is indicated, then any

other transformation .-,ed for making f applicable does not carry the situa-

tion away from the winning set.

One reason for setting up the assumptions formally is to indicate

that the convergence of the GPS is difficult to assure intuitively. Hence

if relaxed assumptions are envisaged on intuitive grounds, the proof of

the convergence of GPS will have to be carried out with a certain standard

of rigor.

One concentrates on the following class of sets

D = tTI UjSf If e F0 j

A class of sets f F, X c DI is now defined with the

following properties

Dl. For each set X C D and eachf EF X' = _1 s 0

sXo 
0 implies

0 Sfo n Sf_ c for each f e F0, X eD.

so - s so-1)sso
-- g F gSf

D4. s C (so Sf)fl Xi , and s c S implies g(s) c Sf0
f 9ie < fX' 

where j <i
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An algorithm modalliag tha CPS (togathar with 6ugeoLooo for

making the model more realistic) will be given presently. Meanwhile, the

following sequence of lemmata will indticate the convergence of the algorithm

am presented.

Lemna 2.10

Snf

Proof

fl 0 ~ CS by D2. Hence, intersecting both sides with Sf

ff

However, by definition Sf5  ~ adS( f-0 ec So 5  f 0
fS

0f
Contrapositive of D2 yields Sf~=0

Given an element s c T' one can Bet up a seus'e X(a of

elements of D (called a difference sequence) as follows:

X 0 (a) a T

Since a e Tt there is an elementf E F such thatBse S 0~s by

Dl. X 1(a) is defined to be Sf. For all i > 1, X 1 (a) is defined if and
only ifa s (). Inthis cases 9cS -X (a) where X (a) . Sf for
som fe .By D3 there existssag EF., such thata e S 0 X i (a)

ithndefined to beS. Clearly g 4fsicinthiscae 9r

wihcontradicts lemma 2.10abovs.

A difference sequence is said to end at L if Xi+(a) is undefined.

Lemma 2.11

If the seuneXiW i 01..)ends at n, then Xn(a)o Xi (a) for

any ± < n.
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Proott

i 1•

s r X (a) whence X (s) is undefined, contradicting the hypotheuis,

The difference chair equence for an element se T' is not necessarily

unique. However, the extra assumption will be made that

D5. There is an integer N such that for each s c T', all

difference sequences end at some i <N.

Lemma 2.12

Let I XI(s)ji a 1,2,...n) be a difference sequence for s, ending

at -. Let X n(a) = Sf, and X (s) = S for all i > 1. Then f(s) c St0 x
for each i > 1. 6 (

Proof

By lemma 2.11 f S gi for all i(l<i<n). Also, by definition

of difference sequence a S i-1 - S for each i(i < i < n). Again by
(Xi-1  i-i-I

DI, a c (X (a))' ,hence a EX s)) for some J. Hence

E (S0  - S ) f(XI(s)) J Since f 4 gi, by D4 f(s) S i-IFtxt ( )  gt 9' st l' (s) ,

Leu-a 2.13

Under the hypothesis of Lemma 2.12, if a e (Xi (8))j for each I,

then f(s) 4 (Xi(S))ki where ki .. Ji'

The proof follows a-forteriori from the proof of Lemma 2.12

Let (Xi(s)) be a difference sequence fors ending at n. Then

s C S 0 1 for all i < n. We can prove the following rather crucial

$I (a)lem rma.

Lemma 2.13

For a e S, either a C X (s) u S or there is finitegi x '(s) 8

gqX (a
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sequence h,h 2 ,...hk(hi C F ) such that hk(hk.l(...hl(*).,.) c So

'gi
Proof

This is trivially true if i u N, since s S S0YN• S°

by D5. For L - N-1, it * t thens t NHi(3 ) a g85 S S

Also from the proof of lemma 2.12, a (XN'(S))k for sm k. Hence L(s) c

(XN-(e))k.1 by definition of S N-1 Also, be lemma 2.12 0N(s) C So N-2
W.l (" (,)

Hence there exists a g (by D3 and D5) such that gNs " 0 S;

whence V(Y()) C (XN (s))k-2. 3y k repetitions of this process one obtains

an element as indicated in the theorem.

Let now this theorem be true for i - k. Let s so k-

gk.lxk- (a)

ifa d x (s)-SS thenbyD3, e S0  k Either s e S or there
Ik-I gkX

is a finite sequence thilhi E F0 i < n\ such that hn(h n 1...hl(s)...) C Sg

If for some J, h (hj-l...ht(s)...) Cx k-l () then the theorem is proved.

Otherwipe, let s c (Xis)). Then sk(h n(h n..hl(s)...) E (x k'l())m-1 ' By

a finite repetition of this process one eventually artives at an element
s' x€~ k'(a).

One can now state the basic result of this section. Let a c T'.0
By considering the above lemmata one can see that if all the elements of a

class of sets Soif C Fo, X C D1 can be recognized, then the following

process will generate a winning solution for s° in a finite number of steps.

0
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1 Set. ', j 0, 1 = 0, let - T.

2. If a X, go to step 4.

3. If s9 Xil, find f such that s C S' set i - i+l,

X i  S . Return to step 2.

4. If X T, Stop.

5. If X 5f, set j = J41, s f(sJ1 ), lot (funct) k -f

set k k+l, i a i-1. Return to Stop 2.

A class S f E Fo, X E D always exists. If so ST

and So S for all f, g e Fo, one has T' U f satisfying DI.
SfS fSg 0f F 0fT

D2 is satisfied since SfXC Sf for all X. D3 is satisfied since Six- Sf is

empty. D4 is also satisfied since the antecedent is false. D5 in satis-

fied for N = 1 since X'(s) = Sf implies a Sc Sf hence X 2(s) is unde-

fined. However, the set of classes of sets (So IX E:D, f c F0 may be

much richer than the consisting of only the class (SfTIf F3 F fS If

g c Fol . Hence for some of these classes Sfx t may be easier to describe

in a given language than SfA. Hence, in spite of the fact that the

S~T are (at least conceptually) constructively defined and the Is0' are

not (Dl-D5 are far from constructive definitions) so definable at present,

does not perclude their usefulness.

The above discussion is intended to form a model for finding

solutions which have very close analogies with the General Problem Solver.

The intention was to set up the S0 as the Kernels of ma,.L mapping every
fX

point to some specific difference with X. It will be noticed that SfX

S0(g4f) is not necessarily empty. It is this fact which gives rise to

the non-uniqueness of difference sequences. If one relaxes the condition

g0
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D5 to read, "fur each a c V, at least one difference sequence ends at some

I < N" and if the number of non-disjoint So for a given X is finite a small

modification can be madc ir the procedure to find such a difforence sequence.

It Appeara from a perusal. of the flow-charts of the GPS that the occasional

"back-ups" are caused by such a search. The search can be cut back even

further b7 the fact that it is useless to have XJ(s) a X (s) in any difference

sequence, by virtue of the following lem a.

Loom 2.14

If Xi(s) is a difference sequence where XJ(a) k(s)(j> k),

then tyi W , is also a differencr sequence where

Y (a) Xi (a) for i < k

Yi (s) - X(iiJ)+k(e) for k > J

The proof will be left to the reader. The point that is to

be made is the above model need not be the most faithful model of the GPS

and that more faithful models can be built. However, no matter what the

model is, it may be worthwhilt to consider the exact conditions (like Dl to

D5 above) under which the model can be used for finding winning solutions.

When a GPS-like program meets with occasional failure, the need

arises to modify the distance-transformation table. Such modifications may

be made in a directed manner if ore can pinpoint the failure to one or

other of the conditions required for the convergence of the procedure for

constructing winning solutions. Of course, to enable such a process, it is

necessary to understand the basic structure of the W-problem involved.

Often this structure is ill-understood and difficult to understand. No

attempt is being made here to ignore the difficulty. Howpver, the basic
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structures presented here do indicat ans val -dirarted Anventey which

help to decide the directions in vhich understanding should be attempted.

A
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10. Sundry RemarksRegarding Search for Winning Seuences

In Sectiona 7 and 8 zathodr vere developed for daftninR strate,ss

in such a way that the use of the strategy did not need the recognition of

the elements of their Kernel, In Section 9, however, what woas described

was a procedure for constructing a winning sequence. It will be noticed

that for finding an element f of the winning bequence one not only used

the point e, but &lso keptin mind the previous procedures used in finding fk

(notice that in Step 5, i vas met to i-I after the finding of fk' not to

1). It is posmible that one can use GPS-like procedures for defining

strategies; (for instance if f 4 g implied Sf S 0 for all X, one

could easily transfer control to 1 in the procedure) however, it is not

clear that one should limit oneself to the concept of strategies as a

mettiod for solution construction.

Two remarks connected with the Tower of Hanoi coma to mind

here. The reader may verify that the following procedure generAtes a winning

solution for < (l,2,3,...n), 0, 0 >.

1. Apply (n,(-l)
n+ )

2. If the resulting state - < 0,(l,2,...n),0 >, Stop.

3. In the resulting state < (X0I...XO, )(X ,...X 1 i )

(X 2 1 ,...X 21  >.

2

Let Xki n. Find max (X.X 3  ) = Apply (Xti ,a), where a ti

k u.Jikj JPm ct i

such that t+s(mod 3) 4 k. Return to step 1.

In words, "Hove the smallest disc. Then make the only move

possible without moving the smallest disc. Go back to moving the smallest

disc. Always move the smallest disc in the same direction".

I'
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does - -

This procedure does not yield the winning solution for all oftuo-

tion, once in 8 while getting into a "loop". However, for the cases where

it does yiald A solution, the solution coincides with the orp obtaLned by

the previous strategy of Section 6.

In neither of the above caese was it clear qe to how the Vro-

cedure for obtainin g the winning solution was discovered, The following con-

siderations seem to lead to a more "natural" way of obtaining a solution,

One realizes that, if the situation < (>2,...n),0,O > ha. to be

coverted into the situation < 0, (l,2,.,.n),0 > by applying controls as

restricted by the rules given, it is necessary that I be "moved" from the

first to the second position and for this all the other discs have to be in

the third position. Hence one mst, sometime in the course of a2plying the

controls, obtain the state <(1),0,< 2,3,...n >>, which then is clanged to

. 0,(1),(2,3,..,ti) >. It is also clear, that now the set ot discs

(2,3,...n) can be moved back to thc second position: one can apply a

sequence of controls very similar to the ones needed to move this set from

the first to the third positton. It to alro clear that the problem of

going from <Xl,2,...n),O,O>to < (1),0,C2,3,...n)> is analogous to the prob-

lem of going from <(l,...n-l),OO>to <0,0,(1,2,...n-l) >. These conditions

lead naturally to the setting up a recursive procedure, to be called, "Move

(p,p+l,...n) from position k to position V' (k=O,l,2; 1=O,1,2; 4k)". The

procedure is as follows:

"If p -n, move n from position k to position I (apply (n,t)

where k+t = A(mode 3)). If n~p, move (p+l,...n) p from position k to position

m (mk,&'). Move p from position k to position £. Move (p+l .... n) from

position m to position '.

The overall procedure then is "Move (l,2,...n) from position 0

to position ".
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What has been done above is to set up the idea of a "Macro-

control" %(p~p~l,.,,ai k, i) which consists of sequences of elementary

controls. The sequence, as shown Above in words, is generated by the

following definitions.

I. M(p;k;A) - (pt) where k+t = I (mod 3)

2. M(p,p+l,...n; k; 2) = M(p+l,...,n; k; m)(p,t)M(p+l,

. I.,r,; m; I) where m 4 k,e

If one now expands M(1, 2,3;0;1) to generate a winning sequence

for < (1,2,3),0,0 > one obtains the follo, ing sequence

H(1, 2,3 ;0 ;1'

a M(2,3;0;2)(I,+)M(2,3;2;1)

= M(3;0;1)(2,-l)M(3;1 ;2)(l,+l)M(3;2;0)(2,-])M(3;0;1)

= (3,+l) (2,- (3,+1) (l,+1) (3,+l)C(2,-1) (3,+l)

yielding the same solution as in Section 4.

From here, it is a matter of perseverance to show why the

strategy of Section 6 is a natural consequence of the above recursive pro-

cedure. This will not be attempted here. However, the point has to be

made that since the function M(1,2,...n;k;l) vas not in the original

repertoire of elementary statements used in describing the rules of the

game, this does not throw any light on how one can mechanically generate

this function fro-- the original rules. For a discussion of these points

see Amarel [15].

However, all these considerations do shed some light on what

is iften called "Method of Subgoal generation" in literature, Here the

term will be used somwwhat more strictly then Is often used, to give some

concrete meaning to the discussion. The discussion, however, will remain

informal.
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Given a W-problem < SFoT > and an element s c T k <

Tk is called a subgoal for aO . If k < m < j and TM wt5' , a unit set,

then the pair (s',Tk) is called a sub-problem for a .. In the above case

of the tower of Hanoi, the initial situation is an element of T .-1; the only
2

element of the T that need be considered is < (I),#,(2,3,..,n) >. The
2 -2

attainment of this subgoal T n-l. leads to two successive sub-prohlems

< < (),,(2,3,_n) >, Tn ll where >Jand

< 1>f)... The advantage of this kind

of breaking up of a problem into sub-problems is evident in the case of the

Tower of Hanoi -- the successive steps in the breaking up exhibits the

entire winning solution! As to whether this is feasible in all cases

depends heavily on whether the language of discussion is strong enough to

indicate that some of the sub-goals are unit sets, i.e., when there are

unit subgoals. Very little research has been done in this area, even

though words like subgoal and 'sub-problem' v been around ever since the

inception of the field. The reason may very wtll have been that the advan-

tages of precision of definitions have been consistently overlooked.

It ought to be pointed out tVat the idea of subgoals has mean-

in& even when subgoals are not unit sets. The reason for this is as
follows. If So€ T and m < j and F is a finite set of cardinality, say,

0 0

k. Then there are at most km  possible control sequences, at least one

of which leads to a situation in T m . From this situation, at least one of

at most km sequences leads one to a winning situation. Hence if so0 can be

recognized to be in T and Tm can be recognized, a total of at most km+ ki
'm

nystematic searches ire recessary instead of the ki searches that would

otherwise required in the absence of any knowledge about the T . Of course,

all this search would be unnecessary If Ti could be recognized for each i.

0
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In the previous sections, the entire idea of searches have bean

avoided. As indicated above, searches become necessary when any of the

techniques discussed in the previous sections (or similar techniques not

discovered yet) cannot be applied due to ones inability to recognize some

of the sets involved.

At present very little ia understood about optimal search pro-

cedures in the context discussed in this book. In what follows, a very

informal approach will be made towards setting up some ideas on the basis

of which search may be discussed. However, it ought to be pointed out at

the outset that search cannot be carrie4 out with confidence -- even in

prinriple -- if there is no method for recognizing T'.

Given a W-problem (S,F ,T) one can associate with each s e S

a set, F(s) = Ifjf c F0 and a E S, 1; F(s), of course is given by the

rules of the problem. K(s) will denote the set of all linear well-orderings

on F(s). Clearly, any element of K(s) is a subset of F(s) x F(s) and hence

a subset of F0x F0 . Let B(Fox F ) denote the set of all subsets of F0X Fo,

i.e., the set of all binary relations on Fo . By a search strategy will be

meant a function

ST: S -B(F x F)

such that S c K(s) for every s. For some elements of a (when s f fU sf)
fc0 f

ST(S) is the empty ordering.

On the assumption that F is finite and T' is finite and recog.
0

niable atd given any search strategy ST one can set up the following pro-

cedure for constructing a winning strategy for soe T'.

1. Set i=O

2. Set X = ST(si)

3. If si c T stop: indicating success
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4 if i V wt i=i.L if i > 0 and return to step 6. Other-

wise stop indicating failure.

5. If s = sj for some j < i set ii-i if i > 0 and return to

step 6. Otherwise stop indicating failure.

6. If X is empty set imi-l if i > 0 and return to step 6.

Otherwise stop indicating failure.

7. Set (funct)i = least element of X . Subtract (funct)i

from X and store result as Xi. Set i=i+l, (funct)i~l

(Si.) = si. Return to step 2.

Such a procedure (an exhaustive search determined by 5T) would

stop after a finite tima indicating success for all s c T'. In a progressive-

ly finite problem (see Section 8) V need not be finite for completion of

the procedure. However, the crucial point here is the fact that this

finite procedure may turn out to be impossibly long if ST is not well

chosen. If ST(a) turns out to be such that its least element turns out

to be f where a C SfT , then an extremely rapid prccess will result.

One can say somewhat imprecisely that most methols developed

by workers in the field consists of setting up efficient search strategies.

Most methods dealing with problems of the W-problem type tend to set up

0sets like SiT, SiX , Ti or T' as described in previous sections. These are

set up generally from common sense (or "learned" -- as later vhapters will

indicate). However, it is kept in mind that the sets "guessed at" may not

coincide with what they are supposed to be so that when a certain control

applied to a certain situation does not lead to a winning situation one

caa "start over again" using a different control. This leads to something

in the nature of a search-strategy. In many cases, it has turned out that
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the search strategy so induced is better than what can be expected from

an arbitrarily chosen search-strategy.

Search strategies in literature are often based on what are

called "Intermediate Evaluations". In the point of view adopted in this

book, the Intermediate Evaluation Functions are merely alternative ways

to form descriptions of the fTtj or of TO. This will be discussed at some

length in Chopter III. It will suffice to point out here that since

Intermediate Evaluations are functions with the set of situations as their

domain, their Kernels defines partitions on the situation-set .

There is a general belief often expressed in the literature

that problems can be best attacked by "going backwards" from the winning

situation, i.e., by successively generating members of T1, T2, T3, etc.,

till a0 is located in some T . This belief would be valid if these sets

did not grow exponentially with i. For instance, if the problem had the

structure of a tree rooted at so (i.e., if all situations 9 j a was such

that s = f(s1 ) for an unique f and s') then such a generation method would

be highly efficient. Exactly the opposite case would occur if each situation

in TO was a member of f for only one f and eich situation s was such that

for each f e Pop there was a situation s' such that f(st ) = s. Here, it

might be better to "go forward".

The above paragraph indicates that search processes based on

enumeration of situations can only succeed in very special cases. Methods

for recognizing such special cases have not been developed. Nor have many

methods been developed for constructing descriptions of the sets discussed

in Sections 7, 8 and 9 from the description of the problem. It is becoming

increasingly clear that the use of the proper description language is a

very cruaial matter here. This will be discussed in somewhat greater depth

in later chapters.

* ... ..Jl.
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Before concluding this chapter and section it may be worthwhile

to point out that although a study of efficiencies of search strategiss

has not been made in a rigorous way, it may be extremely worthwhile doing.

As clearer understandings develop of the sets discussed in this chapter and

more are added to this repertoire, the effect of errors in recognizing these

sets may be come clearer.
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CHAPTER III - GAN4E6 AND SOLUIION iHCEOtBDS

1. Introduction

In the previous chapter H-situations were introduced as formal

structures and the ideas of forcing situations and neutral situations were

introduced, as well ae the idea of winning and non-losing strategies. Also,

an important theorem (Theorem 2.1) was quoted regarding the existence of

winning and non-losing strategies.

The general model above was then specialized to yield a class of

structures which had one-one correspondences to W- problems. Also, it was

shown that winnin3 strategies of these special class of H-situations could

be utilized for construccing W-strategies for the corresponding W- problems

and hence for constructing winning solutions. It was indicated how W- pro-

blems are adequate formal models for many problems studied in the field of

Artificial Intelligence. A number of alternative methods of constructing

winning solutions for H-problems were then discussed.

A similar sequence of discussions will be undertaken in the pre-

sent chapter, dealing with the formal model of a wide class of two-person

board games. As is well-known the classical model of games can be specia-

lized to cover exactly the same situations. Many of the formal notions

introduced will be superficially analogous to those introduced in Chapter II:

however, it is not clear that the ideas in Chapter II would be special cases

of ideas developed in the present chapter. Such relationships will not be

discussed. Also, as before, no attempts will be made to derive results as

special cases of results obtainable for M-situations -- even though it may

be possible in some cases.

7F II I- ,i
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In the next section the special class of M situations will be

introduced as models of game situations and the special properties of winning

strategies pertaining to these models will be discussed. In Seec. 3 specific

board games will be formalized to conform to the structure of these special

classes. In later sections methods for construction of winning strategies

will be considered. Here, as in the previous chapters, the importance of

the languaSe for describing certain mete of situations will be kept in mind.
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2. Game Situtions andStrtesies

A Basic Gem Situation is an M-eituation<S, C, D, M, Sw, S '
with two pre-specified elements cC C and d D such that

0
GI) Sc Iisd 0 0 implies either c w C. or d - d0 but not both,

The following facts ar worth noticing

sc U Sd; t)S d  =UL SC
d~d a coc00 0

Proof: Let o63S , then by definition there exists a d* D ando

' S such that (a, c , d, s')6LK whence., dof D d -- ,vr . S sin
0 0

Sc Sd 0 by G1. Hence Scc dYd Sd
0 0 0 0

Conversely, if s&Sd where d 0 d , then by the same argument as above there
0

exists a c such that svS d'S. However since d 0 d , by GI c c , Hence
d c o

a S4  . Hence S c ,2U Sd .
o o d~d

The second part follows similarly

Lemm 3.2

i) $aS and c co implies a Sc

ii) S5 d aand d d implies a d

Proof: By lama 3.1 afSc end i m a d

implies 54 Sc(I So which contradicts G1,.

consdtin
The second part follows similarly

The above lommate indicate that c Ur S€ has a partition consisting

of $€ and -c-y, S . The sames et UJ S coincides by definition of M-

0 0 CC&C c

situations with U S . This in its turn has a partition coinciding with
d#D d

the previous partition, S coinciding with U S and S coinciding
dCGC c d~d d

i'with S 0
_____c*

It -..-
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The idea of basic game situation will further be specialized for

our purposesa in the following way: A basic Same situation will be called

a Itame i.kituation if it obeys the following additional axioms,

a 2) StUsSS C - Us S S- 4.J s
W L cC4 c d4 d

03) aiSo0 Sd implies (c , d)(s) S - SW - S
c1  0 W c0

G4) st S n s implies (c, d )(s) S - S - S
c 0 L do

In effect the axioms may the following, "The players play alter-

nately (c and d standing for "intiction"). The game stops whenever a win

or a loss is reached (it can also stop in a draw -- see definition of SD in

Chapter II). The opponent ("disturbance") cannot make a final move into a

win and the player cannot make a final move into a loss".

It is possible that the major points that will be made about game

situattons can be made with much weaker assumptions than made here. However,

this fact will not be emphasized further in this book.

As itn the previous chapter, the next paratgraph will introutce a

somewhat simpler-looking structure which will have many properties in comon

with game situations.

A board game is given by the 5-tuple<S, G, F, W, L > where

S is an abstract set, F and G sets of functions from subsets of S into S and

W, L subsets of S, with the following properties

El) ( 0 )Nl U'S).

B2) WAL v 0

B3) WULV S - U S U) s
f- f6 ge G g

B4) s S and ftF implies f(s) C S - U S - L
f f F f

B5) sS And ge implies g(s) ,i S - W - LJ S
9 S"G g

Given a game situation R (S, C, D, M, Sw , SL > one defines

a 5-tuple B(R) - S, F, G, W, L > as follows

6

I 0
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) W ; L-S

ii) For each cl C, there is ah unique element f F such that

(c, d and these are the only members of F. For each d D then t

an unique element Sd G such that gd - (c., d) and the#* are the only

members of G. fc #rA Sd are not defined since (co,do)(u) is not defined.
0 0

Theorem 3,3 Given a gae situation R, B(R) is a board game.

ro S i a set and W and L are subsets of S as raquirad by the

definition of a board Sam. B2 is satisfied since SW and are disjoint

by definition of an H-situation. It is clear fros the construction of B(R)

that .0 u s - o . ,vve, sin.cS by laeomm 3.1,
fQP F f 04C c d o *i doeee sincec0 ( i

one has ( F S . Similarly g [J $8 dd f HnftP 'f-"c'- 4 y Sd" Hance ZP $ S

cYc (S l S d ) w 0 proving B1.
0

d|d o

C s0 C co~t so 0 (dd d)IJ(c~{ 0 Sc)

. ( U Sf)Li('(J S.)

Similarly d.D Sd f'L6F f)(SYG S)

whence G2 reduces to B3.

Again, s$1S implies OScSn

and f (a) w (c,d )(s). By 03, f€()e S
c a ~f) c S

S -W- U S proving B4. Similarly Q

yields 
5.

Given a board ams B .S, F, G, W, L one defines a 6-tuple

R(B) - <S, C, D, H, SW, SL> as follos:

i), S" W; S = L

iI) For each fC-F there is an unique element c EC. In addition
f

there Is an element coEC. These are the only elements of C. Similarly

the only elements of D are do and an unique element dg for each g6G.

,,.
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iii) (s, c. d, s')CM if and only if

either a) c C0 , d - d for some ge'G and s' w g(a)

or b) c w c, for sow feF, d a do and a' - f(s)

The following lema is useful for tying together the next theorem.

Lama 3.4 If B is a board game(S, F, G, W, L> then the follow-

ing is true for R(B)

I) Sc 0 gCG S- dd Sd

d) do. f aF f - eve C

Uii c11C 5c -f,{ dYD Sd
Proof of I

Let sCSC . Then there exists d 6D, s'ES such that (a, c0 , d, a')6'M.

By construction d = d for some gGG and s' & g (s) so that sCS gC

If a4s 8 then (a, co , d5 , g(s) )49 M whence s dVd do Hence

Co ge' - d

Again, let S9d Sd; hence in particular sCSd . There existsI! 
S

c4 C & a'6' S such that (a, c, d , s')14M. Hence c - c0 i.e. s' = g(s)
whence sc L S Also if #.S, then (s, co, dg, g(S) )CM whence sdSc

Hence So gU S

ii) is proved similarly

ILL) follows since U c S cL -cS U '' S )40'sf) -etcr C 0 c V " 0 4 S G

U
ddSd 0Sd dCD d

Theorem 3.5 Given a board game B, R(B) is a game-situation.

Proof: Let (s,c,d,s')GM and let (s,c,d,s") CH. If c w c

and d * d5 , then s' - g(s) - s". If c ac f, d - d then s' - f(s) M 5".

Y00This proves Ml. To prove M42 assume sfi Sc C Sd By lemma3. d S

C (U Sf ) U ) :'0by Bl; either c c or d -d3  Also by
o oF 6 G0

@a
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le,,a 3.4 S S 0. This proves Gi. If af S c n Sd$ then by G1 (already

proved) either c - c. d d whence (8, c , d, g(s) )6M or c - cf and
8 o j

d w d0 whence again (s, c, d, f(s))(M. G2 follows since

s - WUL S- U s U s
'W f C F f geGgI

by B3.

f-F f gB .G

-S c C S, S - dVD Sd '
To show G3 one notes that s f.S c s  implies s6S where d = d

c0 d 9
Hence by B4, (c., d) (s)- g(s)ES - W - gLJ# Sg S - - S G4 follows

similarly from B5.

It is also inte'esting to note that

Theorem 3.6 If B is a board Same and R a game-situation then

B - B(R(B))

and R - R(B(R))

Proof: Let B - 4,S, F, G, W, L>

R(B) - <S, C, D, M, SW , SL>

B(R(B)) - <S, VG', W, L>

Let fe F and f(s) -s'. Then there exists a cf 6C such that

(s, c, do, s')4 H, i.e. (cf, d0 )(s) - s' whence f (S) = s'. Hence f.if .cf cf

Again if fc (s) - s' then (cf. d 0 )(s) - s', i.e. (s, cf, do, s')4CM which
f

implies f(s) a s' i.e. f ¢- f showing f - f . Hence F-F'.
Cf ~ c

Let now f6F' and f - f where ce C. If f (a) - s' th. n (s, c,
c c

do, s')C M whence c - cf, for some f'e F such that f'(s) a s' w-ence fC;f'.

Again if f'(s) - s' then (s, cf,, do , s') - (s,c,d ,S')(,M or f0(s) - S'.

That is f': f or f' f. This shows Fnr F.

The equality of G' and G cnn be proved analogously. This shows

B(R(B)) B.
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Let now R -,<S, C, D, K, S1~, SL>h()-4(,F, G, W, L>

R(() ,C'. D'. M,. SW .L

F has an unique element fe for each element cc C where c cc and

c 0 Hence the mapping c "cf between C and C' is one-one onto. So is the
C

mapping dt-hdgd from D to D'. Denoting dgd by d and cf by c these maps may

be considered as Identity maps.

Lot (s, c, d, s')a-M; by G1. either c - or d a d but not both.
o 0

Let c - co then Z (s) w a'. Hence (a. Co, d, 51)C- M'. Since dg - d,

(s, c, d, s') e M'. Similarly if d - d , (s, c, d, s')(' M'. Hence M .. H'.

Let now (4, c, d. a") t M', Either c - co or d - do by construction
of R(B(R)) for B(R). If c a coa, then d - d 9 for some d c:D and 9d(S) - s".

From construction of B(R) for R this is true only if (co, d)(9) - a', i.e.

(6, CC)$ ')- e c, d, s') t M. Similarly if d, do, (Z, C, d, s' ) M.

Hence M'S;M.
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3. Winning Solutions in Board Games

Theorem 3.6 establishes the similarity of structure between Board

games and g e-situations. Most of the present chapter vill deal with

board games. In th6 rest of this section the concept of winning solution

and winning strategies for board games will be introduced.

Given an element s U Sf, a sequence 7- (. 1lf 2 ,...fn; f f F

for all 1- i n), and a sequence 5- (g, 2 ,...gn.1; 9 LuG for all 1,

1 i ~< n), vll be called compatible with? if and only if

f1 (Sa 1) C$81; g1(fI(o))I Sf2

I (sllo))) C S 2; g2(f2 ($1 (fl(S)))) 3

for all i<n-1

ft+l(gj1  . 9 1(f. (0)) ... ) S g +1

i+l i+l 1 1 f ' +2

Given w ll S and (f,.f f F for all i, lisn),

will be called a win ing solution for o if for each =(gis29 49
gigG for all 1, 1.fien) compatible with

n (gn-l (f i...g 1(flI (a W.

As was indicated in Chapter I, the demand for a situation so

to have a winning solution is an extremely restrictive one'. corresponding

to the demand for an open-loop control. The next few definitions introduce

the less demanding ideas of winning strategies.

A function U: VF Sf-F is called a board control strategy if

for all a, QF(s) - f implies a fSf. Similarly a function Q U S4G is
G gg G S

called a board disturbance strate z if for all s, Qb(s) g g implies sE Sg .

L]
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A bcar4 control strategy Q is called winnLng tor s S if there

exists an integer N such that for every board disturbance strategy %G there
exists sequences (f1,f2 1... f n; fi C F for all i, 1ji<n) and (glPg 2 ... n-1;

S C for all L, 1 <,i4n) such that

(a) n N

(b) g() "E; "

QF(gl (f 1 ) ( OM - %(f 2 (g1(f. (s ) 82

for all i< r-l

QF(g(fi.''' l( f eo) ') " fi+ l ; Q,(fi+Si... (gi(fl(so
) ' ') "

gi+l

QF(gn-l(fn-l"'gl(fl(So)'" .. fn

and

(c) fn(gn.1 (fin-1... 91l(fl1 (so0)..)( W T

For the sake of brevity (a) may be expressed by saying, "the

sequences rand 5 have lengths n and n-l"; (b) may be expressed by saying,

"the sequences " and are dictated by QF and Q%"; (c) may be expressed by

saying, "the sequences I and j end so in W".

The reason for calling a demand for winning solutions stronger

than a demand for winning steategies can be brought out by asking two

questions:

i) If there is a winning solution for so, is there a winning

board control strategy for s.,

ii) If there is a winning board control strategy for s , is
0

there a winning solution for so?

m6
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The answers to both these questions are "no" in general. In what

follows a sufficient condition will be set forth for the answer to question 1

above to be "yes". (A necessary and sufficient condition can be developed

with some effort, but is not worth doing.) A counter-example will indicate

that the condition is not sufficient for the answer to the second question

to be "yes

A board game will be called free if for all f, f' F and a 4 S

K 6 S implies 8(f(s))" Sf, or g(f(s)),LS

Theorem 3.7 If in a free board Sam there is a winning solution

for a, there is a winning board control strategy for so .0

Proof: Let ( - (f1,f2...fn) be a winning solution for a

Let QG be a board disturbance strategy. Define a sequence = (9192,...gn.1)

as follows:

g, " (fl(so))

and for all i n

i " (fi(gi-l(fi-l--.81(fl(So)...)

Q is compatible with , since by definition of strategy
G

fi(92-1(fi.1...81(f1(So).,...) 9.S

and also, since the board game is free

g ( ..... k- Cf-(s )...) 6 S

Defin sequence of situations T (s 8 .... as follows

45 . I
0 0

and for each I ( n

L = gl( 1(-. .).
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With each element 9 f. Sf associate a subset F C F as follows:

F5  f s 81 for some strategy i
Define QF" fuF S- +F as follows:

QP(*) - fk 
J

where k is the largest integer such that fkeF s. (s) f fl if Fs is

empty,

It Vill be shown that QF is a winning strategy for so , The proof

is by induction on n, the number of components in

If n - 1, f n(o) e W.

In this case F. 9 0 whence QF(So) - fl. Hence QF is a winning

strategy for so.

Let now the theorem bt true for n<J. Let QF(So) -k+]. Tf

k - 0, then (f 2 ,...f) is a winning solution for g(f 1 (So)) for all g,

such that f1 (So)l' S 1  and hence QF is a winning strategy for all gl(fieo))

such that f (s)ES If k>O, then (f2...) is a winning solution

for all gk+l(fk+l(so)) such that fK+l(So)E S gk+ and hence QF is a winning

strategy for so.

The converse of this theorem is not true. Consider a board game

as follows:

S - (A,B,C,B,F,G,H,IJ,K,L)

L- 0

W (K,L)

F - (a,bc)

G- ,1

a
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5a " b 3 C (A,,C,Z,F)

/ - (GJ,)

S7  (H,J)

The functions a,b,cI,*,7 are $Iven in tabular form below

and in graphic form in 7-$. 3.1.

x a(x) b(x) C(x) y (y) (y) (y)

A I G J G C A

B J H H E - F

C H I J I A B

E KJ - C

F L

It can be seen by inspection that there is no winning solution

for A. However, the strategy %F shown below is a winning strategy for A.

x

A c

B c

C a

E b
F a

The concepts of strategy in board games and Same situation are

closely related and this enables one to indcate a theorem analogous to

Theorem 2.1 for board games.

Given a control strategy P in a game situation R one defines a

relation B(Pc).CSxF as follows:

- . . . . . . . . . . . . . . .



Fig. 3.1
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f) 16 B(P F)

if anti on)- , If P(t) Co and f - Similarly givan a ditturbance
strategy PD in a game situation R one defines a relation B(PD)1; SxC as

D

follows:

( EB(P)

if and only if PD(s) do and g P(

The following lemmata can be proved readily:

Lema 3,8 If P and are control and disturbance strategies ii
C P

a game situation R then

i) B(Pc) is a board control strategy in B(R)

ii) B(PD ) is a board disturbance strategy in B(R)

Proof: Only (i) will be proved. The proof of (ii) follo'as identi-

cally.

To show that B(P C) is a function S(Pl: f FSf F let (s,f) C B )
then Pc(S> 0 co, whence 9 4 11c n gFSf whencethe domain of B(Pc) is0

contained in FS. Again, if 84 U f, then s* S UcSc. Hence

1 C (a) is defined and PC(s) -co . If PC(a) - c, then (ufc)GB(Pc).

Hence ~FF is contained in the domain of B(Pc). Hence the domain of

,(Pc) coincides with Sf. (s,f)c and (sf') (PC) then

f' - f and f - f€ by definition of B(R). Since fc is unique f - f' showing! ; c

that B(PC ) is a function.

Let now B(PC) (s) - f, then PC(s) - c where f - f . Since
C

sGSC by definition of control strategy and Sc a $£ , BCf, fultilling
c

the condition for B(PC) being a board control strategy.

Lemma 3.9 i) The mapping PC -B(P C ) is a one-one map onto the

set of all board control strategies of B(R). Similarly (ii) the mapping

PDO- B(PD) is a one-one map onto the set of all board disturbance strategies

of B(R).



Proof Let PC and P' be two distinct control strategies, so that for atC C

least one e UCS . P (s) 0 PI(.). Since r (6) - c. for all g ,S this

implies s4 S c Hence both B(P) (P ) and 8(PC)(m' ) are defined, Lot I
PC(s) - cO c' - Pc(,). By definition of B(Pc) and B(P6).

But the map c I-of is one-one by definition, hence c o c' implies
c

fc I c.' Hence B(PC) 0 B(PCj),

To show that every board control strategy Qp to equal to B(PC)

for some control strategy PC, one constructs the control strategy as follows:

(1) c if and only if QF(s) - fc

P - (ii) co if and only if a . L Sc gdAG g
(iII) undefined otherwise

PC is a control strategy, since PC(s) is defined for UY Sf - S by

construction (i) and over Sco by condition (ii), Also if P ¢(s) - c then

Q7 (s) " f " QF(a) " fc indicates a4Sf I Sc . Also PC(*) - co only if
C € C

S CiS . Again QF - B(P c ) by construction.
coC

The most important thing to notice about the mapping PC * B(PC)

is given by the next theorem.

Theorem 3.10 In a game situation R, PC is a winiing control strategy

for sof €y€ Sc if and only if B(P C) is a winning board control strategy for

o in B(R).

Proof: Let PC be a winning control strategy for s. Then given

any disturbance strategy P D there exists a sequence (ci,dl)...(cn,dn) such that

c1 P C (o; d1 - D(1o)

for each I,< n

6

0



i+1 " C((c i )(- a -)( ' © 'l ( ) "

di+1 " Pc((cid ((c ,)(..,

and

Since so . , ( s oc Cl 1 Co. Also, d1 I d. Also, asice

(C n ,a n)( cn-.1 ,n. 1) (, . (c, d,d ) (o))... W

one obtains fro% the contrapositive of 03, that

(n-l' dn-l )'"#(Clod)(o)" 1" 0€S S d

for so*e 44D. Hence d n a d . Hence,
1' 0

c C - * 0~ ~c c -c ... c *c
1 3 n 0 2 - 4 n-10 o

1  d3  . n  d o , d2 - d4 a ... do. 1  o

indicating that n is an odd integer; let n * Z ° .1.

Setfc -fm for each m s o and d - s for each m<m b Dy definition

of B(R) for each mm, , (c2.'do) - (c2 ,.l.d,,.l) and for each m m 0

gms (co,d 23 ) - (c 2w , d,2)

reducing the equation

(cn od) ((Cn-i dn- .)("" (Ciidi)(So)" •) I W

0 0
Also, for each even i, c1+1  PC((ci.,di.)(... (cldl)(o)) ...

reduces to

f(i/ 2)+l " PC($i/2(fi/2-k"Sl('1(so
) ).. )

and for each odd L

+ dt D((ci-,d(..,(cld)(,o))' )



reduce# to

c(i+l)/ 2  C ( '

However, by definition of B(FC )

Pc(s)  *-i+

if and only if B(PC)(s) - f(s/2)44 since c 0 Co . Similarly

PD(e) -di+ 1

if and only if (P D)(8) " S(L+1)/ 2. Hence one obtains

f I QF(so) m f; %(fl(so)) - 91

and for all i n+1/2 - mo

B(Pc)(gi(ft("'.gl(fl(#o) ...) - fi+l

B(PD)(fi+l(gi...gl(fl(so) '..) " g-+l

and

fmo0

Since PC is a winning strategy, B(Pc ) is such that for any board-

disturbance strategy B(?D) a sequence flf 2.f M and a sequence gl g2..gmo.l

will exist having the above properties B(Pc), hence, is a winning strategy.

The proof of the "if" part of the theorem is left to the reader.

The theorem leads to the following interesting corollary analogous to a

weak form of thecrem 2.1.

Corollary 3.11 In a board game B, there exists a board control

sLrat¢gy which is winning for every element s E ff F Sf such that a winning

strategy for s exists.

Proof: If Be fgpSf in B then 9& Ui S in R(b). If a winning
o

board control strategy exists for s in B then by theoren 3.10 a winning

control strategy exists for s in R(B). Hence the set of all s G fLFSf for

which a winning board control strategy exists is a subset of the set of all

sS for which a winning control strategy exists. Hence it follows a for-

terori from Theorei .I. that chere exists a strategy PC in R(B) which is
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a winning control atrategy for all elements of this set, a second appli-

cation of Theorem 3.10, B(PC) will be a winning strarteK, foi all the elements

of this set.

It will be noted that Corollary 3.11 neglects to make siy state,

ments regarding non-losing strategies. It seams apparent that a stronger

form for Corollary 3.11 could be obtained. However, since most f the later

discussion will be directed towards winning board control strat 'gies for

members of J S in board games, extensions to such stronger forms may
fe F f

not be relevant at present.

A discussion regarding strategies and their descriptions similar

to that in sec. 6 of Chapter II is pertinent here. Corresponding to each

strategy L4., • - - again defines a partition of EF Sf. As pointed out

before, the major problem regarding the applicability of any winning strategy

(even when it is definable) lies in the ease of describing the elesents of

the partition which its Kernel induces. Also, if one is interested in only

a small subset of situations, one has a greater freedom of choosing between

alternative strategies of varying ease of applicability.

The major problem regarding winning strategies, of course, remains:

"How does one find a winning strategy?" As in Chapter II, the later sections

of the present chapter will deal with certain aspects of this problem as

applied to board games. Initially, however, a few well-known games will be

deacribed in the general format of board games. This also will be in keeping

with what has been done in Chapter II.
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4. The NIH Class of Games - An Example

This and the next section will describe two classes of well-known

games. As lt Chapter 1, the examples serve to illustrate the suitability

of the formal model of board games for well-known cases and provide vehicles

for discussion in later chapters.

The first class of gaes can be described in general terms as

follows. One has a number of piles of sticks on the table. Each player

in his turn removes a number of sticks from each pile obeying certain restric-

tions (for instance, "not more than one stick from each pile," "sticks to

be removed only from one pile" and such like). The first player to pick

the last stick in the pile wins. (In some variants of the games the person

*ho takes the last stick loses: but the difference is not essential and in

this book the rule will be as stated initially). Specific games in this class

-will be distinguished by the number of piles, the number of sticks on each

pile initially and (in a more fundamental way) by the constraints

on the way the sticks can be removed by each player.

The set S of situations in all of these games is characterized

by a set of ordered pairs (I,p) p determines which player is to move (this

will be formally stated presently). I is a sequence of n non-negative inte-

gers, where n is the number of piles and each integer in the sequence

denotes the number of sticks in each pile. Any situatioai s&S, then, has

the form ((ili 2, ... i n),p) where i k is an integer for each k (1 kfn) and

p is either the integer 0 or the integer 1.

Each element of the set of functions F has the form (x,0) where

x is a sequence of n non-negative integers x - (l 2 0 ... xn). Unlike the

sequence I, however, where any sequence of integers is permitted, x has to

satisfy some criterion according to the rules of the game. We shall specify

this criterion in general by a statement which x must satisfy i.e. such

that CX (x) is true for any x such that (x,O) is a member of F.

41
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Similarly, each element of the met of functions G has the form

(x,l) where x is a sequence of n non-negative integers x - x

satisfying some criterion

For any element (x,p)V FUG, S(xp) is defined as follows

S( 3 ,P) (I ,p)I ik 1 k for each k(l 4 k f n)

and for each (l,p) S(xp)

(x,p)((i,p)) (( ,L2' i'n) p + l(mod. 2))

where for each k(lk.!n)

W consists of the single element ((O,O,...0),l) and L of the single

element ((O,O,...0),O). O and are so chosen that B. Is always satisfied.

It is left to the reader to verify that Bl, B2, B4 and B5 are satisfied by

any specification in the class defined above.

The description of some specific games follow,

The simplest sub-class of games in this class occurs when n-1,

O C . S (xl ifk) with a specific k. A typical game of this class,

may be "There are 15 sticks in a pile. Each player in his turn takes away

at least 1 and at most 3 sticks from the board. The player who leaves an

empty pile wins". Here the ititial state Is taken to be ((15),0) or

((15) ,l) depending on who plays first.

A specific Same in the larger class which is easy to analyze is

one in w!ch n-2 and ae -Z ((x! 1) and Nx2* 1) and (xl+x2 2 are

With the Initial state ((5,3),0) the game is described as follows, "There are

two piles, with 5 and 3 sticks. Each player, in his turn, picks up at least

one stick, but not more than 1 from each pile. The player who leaves both

pile& empty wins".
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In one of the most well-known sub-class of this class of games

ot'z -3  (3xt)xi) 0 and j 0 i. xj W 0) that is sticks

are removed from one and only one pile. The well-known game of Nim belongs

to this class; in this specific game n-3, and the initial state is ((3.5,7),0)

or (3.5,7),l) depending on who plays first. It will also be of interest

to consider a more general sub-class of this class of games where

0V/ Z ( xl)(k> xi> 0 and J 0 i- xj w 0).

These games will be referred to as various methods for find-

ing strategies are developed in later sections.

49
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5. The Tic-Tac-Toe-Like Games - Another Ex.ampe

The class of games to be diaicssei in this section are of interest

in this book in view of the fact that a close examination of these bring

out in a convincing and non-trivial way the close ralationship that exists

between the efficiencies of solution and description languages. The class

of lanFuasge will be described here without any rgf£erence to the description

language. The significance of the description languages to this class of

gamea will be discussed in a later chapter. A few well-known members of this

class will then be exhibited.

All the games in this class can be visualized as played on a
I:

board consisting of a finite number of "cells". Two classee of subsets

of the set of all cells are pre-defined, which we shall callA and . The

members of, will be denoted by A (with or without subscripts) and will be

called "winning files for x"; members of will be denoted by B with or

without subscripts and called "winning files for Y".

In the beginning, each cell is unmarkud. The players play alter-

nately. The first player, in his turn, marks some previously unmarked cell

with an "X"; the second player, in his turn, marks some previously unmarked

cell with a "Y". The first player wins if, on making his mark, a configura-

tion of marks is produced such that some winning file for X has an "X" on

each of its cells. The second player wins if, on making his mark, a con-

figuration is produced such that some winning file for Y has "Y" on each of

its cells.

Formally, with each game will be associated a finite set N,

and two claes.A and esuch that

A E implies A C N

B implies B C N

, hI



One can asume without losing any essential aspect of the Samoa, that no

member of1Q is a proper subset of any other member ofA ;and simil~rly

fore. Another get with three elements I NY,At will also be used in

specifying any Same in the class.

Given N,A Q for a game, one defines a board game as follows:

Any situation a is a function from N into I X',Ai such that

the number of cells mapped into X is equal or one more than the number of

cells mapped into Y. Denoting the cardinality of set P by JPJ one may

say the above formally as follows

s C S if and only if a 1 jxYA and (( s~ (X) x - ) or

(Is- 1 (X) - -1x(Y)I + 1))

96 W if and only if I a M '(Y) + 11. there exists an

unique file A#.RQ such that Alsi Mx and there is no file B ~ ~such that

s C. L if and only if 1s'(XMl -Is a(Y) P4here exists an unique~

file BC essuch that B o sn(Y) and there is no file A l eh such that

Each element of F is denoted by the pair (n,X) where n is an

element of N. Every element of C is denoted by a pair (nY) where n is

an element of N.

s Cf S ying if and only if s S-L, t sX M a (Y) and s n) -A

In this case ( nX)(s) - ' where s'(m) s(m) if m n and s'(n) - X.

A f S(nY) if and only If s S.ro , I ns X - is(Y)s + 1 and

s( ni) -A -In this case ( n,Y)(s) - s' where s'(m) - s~m) if m 0n amd

s'(n) - Y.

As in the last section, it will be left to the reader to verify

that Bl) to BS) are satisfied by any board game defined as above. In what

follows some well-known games in this class will be described.

A~-I)

s fadol fA-() =sly eeeit nuiu
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The most well-known oub-class of this class of Sames is the mn

2
Tic-Tac-Toe" gsmes. 3 Tic-Tac-Toe or "Naughts and Crosses" is the most

3
popular one among young children. 4 Tic-Tao-Toe is a game sophisticated

enought to be played by adults and sells under the trade name, "Qubic".

In a general m tic-tac-toe game the set N consists of n-tuplas

of integer@ each element of the n-tuple being a non-negative integer less

than m. S, then is a pro-specified subset of XX,Y,A1i

The classesa andS coincide in this class of games and consist

in the set of n typles defined as follows

A -- A ( 0.s<mI

and each f (a) is either a constant between 0 and m-1 inclusive or fi(s) - S

or f - M-i-a: but not all f can be constant functions.

Basically, the above formalism states that a set is a file if it

consists of m cells in a straight line. The idea can be exemplifled by

exhibiting the picture of a Qubic (4x4x4 tic-tac-toe) board and two lines

on it, as shown by the shaded parallelopiped. One consists of the 4 cells

{(0.0,), (Il,0),( 2 ,2,0).( 3 ,3,0)j which can be represented by I(ss,0)

0 * s < 4 The other consists of the cells{(1,0,2), (1,1,2). (1,2,2).

(1,3,2)1 which can be represented byoss2)jO ( s < 4j . The set represented

by{(0.203-0t 0 1 s(4 4 consists of the cell. t(0,243), (1,2,2), (2,2,1),

i (3,2,0)

The files in m n tic-tac-toe are easier to describe intuitively

for small values of n. However, something like the formal description given

above (which is just a parametric definition of straight lines in a "lattice")

is essential for machine representation. This particular representation of

files as n-tuples of functions has been found useful in certain combinatorial

problems associated with multiplicity of various classes of files in general

nm tic-tac-toe games.

Ut
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The 43 Tic-T&C-Toe Game
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Another well-known game in the Tic-Tac-Toe-Like class is Go-Moku

(also known as Renjyu, Pagety and 5-place Tic-Tac-Toe), The set N consists

of cells in a 19x19 board as in 192 tic-tac-tom game. Honv.r, the file!,

instead of being sets of 19 elements, are sets of 5 elements In a line

anywhere on the board. Tius, the files infA and 6 consist of sets of the

(f(),2 a 0whor* f nd f have the form K. I + 9, K -form i (f11)f2a)l0C4t5 2

where K is any non-negative integer less than 16 and more than 4: it beinX

specified that both fI and f2 are not constant functions.

In a third class of games the set N consists of arcs in a specified

graph with two designated nodes. The class. consists of all paths

between the designatad points andt the class of all minimal sets of arcs

whose reoval separates the designated points. This is often described by

saying that the first player, in his turn renders an arc invulnerable while

the second player, in his turn, removes one of theinvulnerable arcs. The game

continues till either an invulnerable path is established between the two

designated nodes or the nodes have been separated. In the first case the

first player wins. In the second case the second player wins.

Canes in this class are called Shannon games after their origi-

nator. Lohman 12i] has recently given a characterization of the class of

networks for which there is a winning strategy for the initial configuration.

The strategy given by him is characterized differently from the general

strategy for Tic-Tac-Toe-like games discussed later in this hook.

The most important difference between the Shannon games and the

mn Tic-Tac-Toe games lies in the fact that the classesA and 6 are described

in a much more complicated way. This has a rather strong import on the

way these games are played.

A specific Shannon Same is commercially available under the name,

"Bridg-it". It consists of the network shown in Fig. 3.3, with the nodes

(I.
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The Shannon Game For Brldg-it

Fig. 3.3
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A Winning Solution io 7 X 7 Hex

Fig. 344



*( and pra-designated. The actual bridge-it board, anA the way the gains

P I

is described, appears different from the above consideration. However,

Busacker and Saaty fZ] have pointed out that If O and are joined by an

extra arc, then the dual of the resulting graph is isomorphic to the result-

lag graph and the dual of the cut sets of this graph are paths between two

specific points of the dual graph (corresponding to the regions separated

by the extra line) with the arc dual to the extra line renoved. In the

commercial game, the two opposing players play on the two dual graphs.

Another important game in the larger class of Tic-Tac-Toe like

games is the game of Hex. The set N conuists of hexagons on a hoiueycomb

structure as shown in Fig. 3.4. The class) has as members all paths con-

necting the top-edge to the bottom edge. The class 8consists of all

paths connecting the left edge to the right edge. The figure exhibits a

winning position.

Before leaving the subject it may be worthwhile to point out that

every game In this class can be considered as a sub-gare of a larger game

in another class. A description of this class will be introduced here.

This embedding will bring out certain essential symmetries between the

control and disturbance which will be of interest in a later section.

The specification starts with the same triple, N, . andt ; the

situations are ordered pairs {s.p I where p - 0 or p - 1 and s C1 X,Y,AJ N

without any restriction on a. Elements of F and G again have forms (n,X)

and (n,Y); however their definitions will be changed slightly as follows:

(u,p) C S(n,X ) if and only if s e S-L, s(n) - A and p - 0. In this

case (n,X)(s,O) w (s',l) where s'(m) - s(m) if m 0 n and s'(n) - X.

(sp) G S(n,Y) if and only if s S-W, s(n) - and p 1 1. In this

case (n,y)(sl) = (s',O) where s'(m) - s(m) if m n and s'(n) • Y.

00
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Also, W end L are slightly re-4efined as follovs: (s,p)ECW if end only

if p - 1, there exists an unique file A 4QQ ouch that A C sl(X); and there

is no file BeS such that BE & e'(Y.); (sp) EL if and only if p - 0, there

exists an unique file A r4& such that A S s 1 (Y) -and there is no fIle B

such that Bs (X).

The reader should convince himself that in the original version of the game

the situations were restricted to the set of first components of all situations

(sp) of the new version which could be attained from ((Aj,... A), 0).

In a later chaptar certain subsets of S associated with winning stratelges of

Tic-Tac-Toe-like games will be pointed out and the merits and drawbacks of the

resulting strateties will be discussed.
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6. Evaluatin& Strateies in Boa.d Games

The practical utility of a winning control strategy is Intimately related

vith the ease with which the blocks of its Kernel i. amenable to easy description.

Any comment that can be made regarding this matter has already been made in

Section 6 of the previous chapter. It is therefore germaine to move directly

to the discussion of various methods for finding winning strategies. The discussion

in this section will roughly follow the same lines as Sections 7 and 8 of the

previous chapters. However, due to the important role played by the disturbance

in a board game. there will be more to say about evaluations in board games.

Given a board game one can define readily two classes of sets i  I i>0j and

Li i> jas follows:

s W1 if and only if there exists an fEF such that f(s) E W.

if and only if SWk(kfi) and there exists an f 6 F such that

5st f9f(8),C U S and for every gG G such that f(s) cSg- S (f(s))C-W (k i).gCG gk

se L1 if and only if there exists gGG such that g(s)e L.

s Li+1 if and only if s#Lk(k 4 ) and there exists a &eG

such that sC Sig(s) 'fYF Sf and for every fCF such that g(s)VSf,

f (g(s)) 6L k (k 41).

It is clear that U Wk U S and U L cU S . The.following alsok >1 k fCF f k.?1 k 'giG g '

can be shown readily.

Theorem 3.6 i) if sC U W then there exists an fC F such that s Sf andk>l k'

f(s)j U Lk.

ii) If Sc-k 1 Lk, then there exists gEG such that sES and

g(s) IS>l Wk . g

0>lk
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Proof: Let SEWk U Wk Tla, proof will be by induction over k,

If a 6 W1 , then there exists an fEF such that f(s)EW ;S - U S ince

f W#) S and U L

Let the theorem be true for sCWi (ifk). Let aeWk. 1 . Then there

exists an f, F such that I(a) ii U S and for all g such that aS 0

g(f (9))c W (Iie.k). If f (n)E -6 U Lk~, let f (a) 6L,. Then there exists a g such

that WIfW)) U 7S and for all V such that S(f(s))f Sf f'(gfS)))E U Lk.

However g(f(s))-Wi (ii, whence there exists an fV4F such that sdSf, and

f'lg(fls)))~4 . Thi.s leads to a contradiction.

1i) can be proved similarly.

L, I and IWi I will be called W-evaluations and L-evaluations respectively.

This idea of evaluations follow:, the mode set by Chapter II. However, because

the structure of board games is -icher than that of W-problems, some further classes

of sets related to evaluations can be utilized for the construction of strategies.

Before taking up such further structures-in detail, however, the results analogous

to those in Chapter II will be set down first. Theorems analogous of Theorems 2.4

and 2.5 will be seen to hold true for board games, again as special cases of

The6rem 2.1. In view of the more general structure of board gases as compared to

-problems, it will be more meaningful and easier to prove these analogs in some-

what stronger forms. For this, a few more initial definitions are in order.

Given a board gaae" S,G,F,W,L/ and an e1].v.A At oC U Sf such that a winning

board control strategy Qy exists for so , one has a positive integer N such that

for every board disturbance strategy Q there exists sequences (£f2f .. n I F)

and (9l,02,..,.1 , gi G) which fulfills the condition set out in Section 3. The

integer n (less than or equal to N) is determined by So 0 F and QG and will be

denoted by n(&oQFQ G ) to amphasize this dependence. In view of Q being a winning

strategy, n(s oQQ) N for every disturbance strategy Q.. Hence a least upper
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bound n(s IQF) exists for the set of integers n(so'QF'QG)i %Q is a board

disturbance strategy . In symbols

n~sQ7  l.pb.n(50 IQF,Qc.)j N
G

Since the set of integers n(s 0QF*QG) is finite, this bound is attained by

some Q G"

The greatest lower bound of n(s ,Q,) over all winning strategies for

so will be denoted by n(so).
0 0

n(so) - g.~b.1 n(s,'QF)1 QF is a winning strategy for so

Again, since the set n(soQ F) is finite, this bound is attained by

some QF"

The following lemma will be useful.

Lemma 3.7: In a board game, let there be a winning strategy for s C U S

and let n(s ) - n(soQF) = n(sQFQG) for some control strategy QF and

disturbance strategy Q" Let sI - QF(so)(S) ands' -a%(sl)(sl).

Then n(s')'%n(so) -1.

Proof: It can be seen initially that QF is a winning strategy for

s'. If it is not a winning strategy, there exists a disturbance strategy

Q' such that there are no sequence f and g of length n(s') and n(s')-l dictated

by QF and QG which end a' in W. If one now defines a new strategy Q" such that

Q1(sl I Q (S ) and Q'(s) - Q(s) for all situations s(O s() for which Q is
defined, then there will be no T, g of lengths n(s0 ) and n(s )-l dictated by

QF and Q" which end so in W. This contradicts the hypothese that n(soQF)-

n(so).

Given that there is a winning strategy for a', if n(s'),$ n(so)-l then for

every winning control strategy QF n(s',Q;)/n(so). Hence there is a disturbance

4F
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strategy QG such that n(s'.QF,QG)> n(so). A forteriori there is a disturbance

strategy such that n(sI.Q FO')>- n(&o). Define a strategy Q such that

1(s1 - QG(ai) and Q (s) - Q4(s) for all s(O for which is defined. Then

n(sopQFQ ) n(so) +1. But n(s) * n(soQ 7 1%).n(aoQ7 ,O ). leading to a con-

tradiction.

One can easily prove the following on the basis of this.
k

Lemma 3.8 If in a board game n(so) ink, then a 6 U W

Proof: Let n(s ) - 1. Then there exists a function fe F such that f(s) W.

Hence H -GW W .

Let now the theorem be true for n(so) - k. Let n(so) - k + 1.
0 0

Then there exist a control strategy QF' such that for every disturbance strategy

Q n(SoIQF'QG) k + 1. Let Q (a - a1 and QG(sI(S) - a'. Then by loomk k
3.7 n(s') - ko k. Hence by the induction hypothesis s'G W C U W Hence

k+l
by definition S i WI -

This leads immediately to the following Corollary.

Corollary 3.9 If there is a winning control strategy for So0 fyF Sf then S G U wt .

Proof: Let n() - k. Then U

Analogous to the case of W-probles the idea of W-evaluations is of utility in the

description of strategies. A strategy QF will be called evaluating if stWk (k>l)
k-1

and Q(W-f implies that for all gCG such that f(s)ES g(f(s))E U W and
g keel i'

sW 1 and QF(s) - f implies f(s)aW.

Theorem 3.10 An evaluating strategy is a winning strategy for every aEf 6 F Sf

for which a winning strategy exists.

Proof: If there is a winning control strategy for a, then se UW Let s W.

Let F be an evaluating strategy and QG any disturbance strategy.
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If k I then Q(S)(S)& W indicating QF is a winning strategy.
k

Let the theorem be true for sE Ui 4 .W Let sG Wk+. Then by definition
k

of evaluating strategies if QF(s)($) - al and Q0 (s (s1). a', then s'Ce L)1Wk .

By induction hypotheas there exists sequence (f1 ,...fu) and (gl 2 ,.gZ n 1 )

dictated QF and QG such that fn(g n(..g(f(s)...)EW. Hence

f nCnl( ... gIlfl(Qc(sP)(QF(s) (s))...) W.

Since QG is arbitrary QF is a winning strategy for s.

One can prove also an analog of theorem 2.6 regarding evaluating strategies

to show that if in every situation one applies a move dictated by some evaluating

strategy, the resulting behavior of the game corresponds to that dictated by an

evaluating strategy. The theorem and its proof is omitted since these are exact

analogs of theorem 2.6 and no new difficulty is created by the relaxed structure

of board games.

The idea of evaluations and evaluating strategies are analogs of the similar

idea for W-problems. However, certain classes of sets exist for board gamen whose

descriptions also help in the construction of winning strategies and whose analogs

do not exist for W-problems. These will now be discussed, for their role In strategy

construction well as for bringing the theory in line with certain graph-theoretic

concepts which will be of value in later discussions.

One can define a class of subsets Kii of gU. S as follows: se U S
i dGg g*C. g

is a member of K1 if and only if for all g such that sS 9, g(s)* WI.

s G ) S is a member of Ki (i;*l) if and only if for all g such that
g(.G g I i-1I

S: g (kc Wkand s4IU K.~

The following are easy to see.

Lemma 3.11 sCWk, if and only if there exists an fCF such that f(s)C K k -  and

there is no fE F such that f(s)V K (J<k- 1).

The proof will be omitted.
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Theorem 3.12 Given am sE U Sf if there exists an ft F such that f(s)E K1faF f
and no f It F ouch chc f'(a) &K (.< i), then f QF(a) for some evaluating

strategy Q7"

The proof of this follows from Leama 3.11. The importance of t Ki

for the construction of winning strategies lie in the fact that if one has

descriptions of K for every i, then one can construct evaluating strategies
£

also.

Before going on to another very important property of the class tKin

the next section, it will be useful and worthwhile to indicate an analog of

cautious strategies in board games. For this one needs the following definition.

Given a board game, one defines a relation R SS x S as follows

sRa' if and only if there exists an hOFL)G such that h(s) - s'.

A board game Is called Progressively Finite if and only if there is

no Infinite chain 9S244 IS) such that for each I s Re1 .

A board control strategy is called cautious if and only if for each

atY W Q (s) - f is such that either f(m)E W or f(s)f 8UJ0 S5 and for all

gt G such that f(s)C S, g(f(s)) WI. Evidently every evaluating strategy is

a cautious strategy. However, one can say more.

Theorem 3.13 If a board game is progressively finite then a cautious strategy

Is a winning strategy for every element a Ca W"

Proof: Let QF be a cautious control strategy. For any arbitrary control strategy

define a sequence ao0l082... such that for each i

i+l - ( (si if i is even

ai+l Qs )(s ) if i is odd
+1Gi
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Evidently, in this sequence a for every 1. Since the same Is progressively

finite d this chain has a last element a N ow ak s6 since otherwise

SQG(k) would be defined and sk would not be the last element of the chain.

similarly a sf.
k f6Ff

If ak.1 8g CS, then QF(ak-2)(sk_2 . ak_ 1 a1Lu heuce k-2 is evett, however

since aE 0j 6 V1 and S~ F1I cautious, a c q wfor all even J. Hence 9k-2"-q Wi*

Hence by definition of cautious strategy sko Y W, which contradicts sk being the
last element of the chain. Hence ak-1g 1 G S. Also k-i is then even. So

a . Then SkeW or akG gYG S Uksg G S . Hence a t .

Since Q is arbitrary, QF is a winning strategy.

This theorem is an analog of Theorem 2.8 and indioates that in a finitely

progressive game one can construct a winning strategy whenever a description of

U W is available.

It can also be seen quite easily that a cautious strategy can also be

constructed from a knowledge of U K1 .

Theorem 3.14 If s8 f1 F U f and there exists an ft F such that f(s)G i  K1,

then f -Q F() for some cautious strategy QF

Proof: Let f(s)E Kk . Then, for every ge G such that f(s)E S
k- 

U

g(f(a ))( U t i Hence a strategy QF such that Q - f is a cautious

strategy.

Some of the above theorems could have been strengthened. Also, some further

theorems can be added regarding the relationships between W and Ki ' Also

ananlogs of these theorems exists for { L , , the L-evaluations. However, for the

present purposes, these are not of immediate importance. In the next section

certain well-known graph-theoretic properties of U K will be introduced which

lead to important methods for construction of winning strategies. In these,

attention will be mostly limited to progressively finite board games.



7. Strte ies lased on Graph Docoosition

Most of the results in this section are interpretations of well-known

reskito in Graph Theory I=51. These intdrptetationa have been aided by cor&ain

elementary concept* of Automata Theory [A4). It in strongly surmised by the

author that the extension of the techniques discussed in this section will be

of help in developing new methods of problem solution.

The introduction of some graph-theoretic notions are in order. A graph

is given by a pair<S,R >,vhere S is an abstract set and RCI z S. Clearly for

a board g$me(S,F,G,W,L >, If R is defined am in the previous section, then

<S,R> defines a graph. Given a subset S' S, R(S') Is the act of all elements

related by R to elements of S'. In symbols

R(S') aul ( U ')( 'e S' and s'Ro)

R(( a) ) vill be denoted by R(s) for simplicity.

Given a graph 4S,R), a subset S' S is called a Kernel if

sS implies R(sM)I S' 0I 0

and

R(S' S' = 0

Given a graph4 S,R> , an integer valued function N:S-o N mapping S into

non-negative integers is called a Grundy function if it has the following property;

M() - n lplies for all s'e R(s), W(a') 0 M(s) and for each integer m<n

there exists an soG R(s) such that M(s') - m.

Theorem 3.15 (Berge) If the graph 4S,R> correeponding to a board gaa.(S,F,G,W,L>

possesses a Grundy function M, then the set

Is ae () 0el

Is a Kernel.
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Proof: If M(s) 0, then for all a' - h(s) jhd FOCI H(as) 0 0, Also if

H(s) 0 0, then there exists at lest some hd FJG such that M(h(s)) - 0.

The next theorem like the last one Is an obvious specialization of a

general theorem in graph theory. One initially introduces another definition;

A progressively finite graph S,R is called progressively hounded if for

each oE S there is an integer N(s) such that all chains of R starting at a

has a length les than N.

Theorem 3.16 if a board Same 4S,F,G,W,L> is progressively bounded and eS,R>

is its corresponding graph, then S,R> has an unique Grundy-function H.

Proof: Define a subset G of S as follows:

G S- i S - U s0 feF f g G g

By definition if sg G and M is a Grundy function, M(s) - 0. Also C is non-

empty by definition.

Since the graph <S,R is progressively bounded for every s 6 S there is

an integer N such that any chain s,8l, ...s *n of members of S such that so - a

and for each i aI R s +1 has length less than or equal to N. The lengths of

all chains starting at a is thus bounded above and hence there is a chain of

maximal length starting at a. Let the length of the chain of maximal length be

k(s). It will be proved by induction that for all integers n If k(s) - n then the

value of the Grundy function 6f a is defined, finite and unique.

If k(s) - 1, then there exists a function hC FUG such that h(s) S S-fU Sf -

and there Is no function hGa FUG such that h(s) h FGSh' because if
8CG g

there were, there would be a chain starting at a of length greater than 1. Hence

k(s) a 1 implies M(s) - 1.

Let the theorem be true for all a such that k(s)4 n. Let k(s) - n+l. Then

for any h6 FUG such that a ISh, k(h(s)).n since otherwise there would be a chain

eh
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starting at a of length greater than rn+l. Since the set of values M(s') for all

a' with k(s) n to defined and finite, one has an unique integer M(s) such that

M(s) 0I MWs) f or *11 a' such that a' h(s) for sawm h aFLUJG and for each

k< M(s), there to an a' such that o'E h(a) for mons h6 PU C anid N(*') i- k.

The next theorem exhibita the relatlonshft between the close {KI and the

graph theoretic concepts developed earlier.

Theorem 3.17 In a progressively bounded board game < S,F,G,H,L> let S' be the

set of all points for which the Grundy function M has value 0. Thou

Moreover if WUL - S - U~ Sf - U) 0 and if for each @45S, the setfF f ScG

C5  g g ccG and a 6Sgj 1j; f inite, then

S f(IU 6)U K
84 G g 1 1

Proof: Let se K.k. It will be shown by induction on k that M(s) - 0.

It is clear that if ac W1, then M(s)> 0, since there is an fc F such that

f(s)cW and hence M(f(m)) - 0. Now if sEK1 . then R WS) W1. Hence for all g

such that gS~ H(g(6))>O. Laence M4(s) m 0.

Let the theorem be true for se Ki. If NIE W i1 1 then H(s)> 0 since there

is an ft F much that F(a)C K I (by Lame 3.11) and hence H(f(s)) - 0. Let

$4 +1then by definition, for every S& G such that a eS 2~ g(s) C W 1 1 whence

M(s) 0 0.

Hence LjK CrS * Also by definition U K Cc Li S Hence the f irst± I~ in I gaG a
part of the theorem follows.

For the second part of the theorem, let a ES'f)( U S ).Define any
4E G g

control strategy Q~ much that for all *4 U Sp If H(s) gi 0, Fs(fS.

fe? P

Since S' Is a Krnel, much a strategy exists. Let Qbe any disturbance strategy.

Let QG (s)() ai'. Define the sequence h 1 2  n... of aembers of F and G an follows

NEENEEe)EMEM i )
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Un Q W); h2 - QG(hl(s*))

and in general

h i+ ° Q (h 2 (h W1.. s ) ...).

h21  QC(h21-1'...hj(k')...).

Since the game is progressively finite, such a sequence must end. Let hU

be the last element of the sequence. Then h. j G. If it were, then

M(ha(h_....hI(s')... ) - 0 and ha, 1 ( F. But by the definition of hri and

the property of Q F M(hu-l('"h I W ) ) - 0. This leads to a contradiction.

He andh NO (h S .- S - so; -WUL and by 84Hence~~ hm & n mh~..hla).) F f s6G "

ha (hm._...(h1 . L. Hence hm(h_,...(h1 (s)...) W. Since QG i

arbitrary, QG is a winning strategy for a'. Hence s'e i Wi by corollary

3.9. Let 'C W]. Since a' - S(s) for an arbitrary g such that *( Sg. one

obtains that if sES'IP(LU S ), then for an gC such that s1FSR. g(s)EW

for some J.

Given s. S' ( U S) define the set of integers

N ' 1(.3 g )(s S and g(a) CW)

Since by assumption there is only a finite set of disturbances gcG such that

s5 , Na is a finite set. Let k be the saxmum of N . Then for all g such
k k s

that a ES8 , g(s)E t-0 WV" Hence at I U I This proves

S'1fj( U S U UK
f G IG

and with the reverse inequality proven in the first part of the theorem it proves

the second part of the theorem.

A board game will be called Grundy-Tractable if and only if it Is progressively

finite. if WU L w Ssf - LU S and for any a UV, S the set G -fi-9 BEG 8 s

19 1gCG and s'S( is finite. The calculation of the Grundy-Function in a

a

I0



Grundy Tractable board gAme leads to a mode of dencription for K and

hence to the construction of winning strategies. However, the method for

calculating the Crundy-Function as indicated in theorem 3.16 is certainly notia

very practicable method. Practicable methods are available for a certain class

of board games which will now be discussed.

A board game S,FG,W,L> will be called Gruph-Interpretable if and only

if there exists an abstract set X1 , a set H of functions mapping subsets of l

into fl (i.e. h4EH implies h:Sh-+1,vhere h 4X-) and a subset T ofin.fsuch I

that

Grl) S *f , x 0

Gr2) i) W - (s. 1)~ 1acT

it) L - f(@,O)k s(T

Gr3) h H if and only if i) there exists an f cF such that s Sh if and

only if (F,O)E Sf and f(s,O) - (h(s),l)

and ii) there exists a g G such that sG Sh if and only if (s,1)c'Sg

and g(s,l) - (h(s),O)

Gr4) i) (sk)CSf and f aF implies k - 0

ii) (s,k) C S and g-, implies k a 1.g

The rest of Lta discussion in this section will be res.ricted to graph-

interpretable games--to Grundy Tr- )le graph-interpretable games in particular.

Obviously, a graph-interpretable game is completely specified by the triple

4Sl, H, T > and defines a graph<Dl, 0i h>. The Grundy-Function M of this graph

has the property that eT implies M(s) - 0.

Given a finite set of Graph-Interpretable Baies 1 9HIPT 1

a graph-interpretable &ar!e~j H, T> is called the sum of J<11 Hi T' if

anu only if
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S)fl -) x ) x...xCl

I2) h*H and h(s1,..s) Csa, ( .,sn) if and only if there is an unique

positive integer i- n and member hI 4 H such that

si si if j 0 j

S3) T - T xT x...xT

Theorem 3.18 Given a finite se a Hi T CJf rundy-Tractable G~raph-

Interpretable Games, their sum is Grundy-Tractable.

Proof: For each i, WIUL I  S - fV F Sf-g , since the ame 2 If OttiI TI)

i
is Grundy-Tractable. If now s -h-H Sh then there Is no f F1 such that

S n- b If n hh

(s.O) Sf and by definition no g6G i such that (s,O) C S . Henceg

(s,O)e S1 -fF S - U S. Hence (s,O)E Li or sET. Hence Ti ?2 - U S'
I f6 Fi f geGi g' 1 ± h6111 h'

h(i Sh follows from (B3). Hence for each I, T i =5 - hU S

Let<fl,H,T> be the sum of 4'J,HiTI) (i - 1,2,...n). If (sl,s 2 ,...Sn)CT.

then for each 1, e " hUH Sh. Hence there is no hCH such that scSh.

Hec TS- ~ I I i6 h'). U*Uence T5 51- U S Similarly if (als2..n) haH Sh then for each I

'i i -,U S Since Ti . i hU~ Sh  s E Ti. Hence

(sit,... n )6 TT..xT. - T. Hence _ U "hU S ST. This with the previousnnx h&H h~
ii'cquality shows T 51 - Us h Hence, WUL Us') Li -48,

S- uf sL - s.
C F f BOG g

Let 8 gG Sg. Hence s - (s,l) for some a a (siS 2 .... n)&*l and for some

i'i.i~n), si hV Hi Sh Since the game<T1 i,HiOTi) is Grundy-Tractable, the

set jhj h6H1 and .,S is finit. Hence the set of I , such that (sips 2... B nC-S,

is finite. Hence the set of g(G such that (s,l) CS i& finite.

@g



To show that<(,H,T> is progressively finite, one assumes to the contrary

that thert exists an infinite sequence h ,Iho. of functions in 11 such that for

and s , a di g l (h h2 ( s)...) i.

Or' e says that <-QkHkk? occurs in h if the kt h component of h (...h()...)

and the kth component of h (h (...h (a)...) are distinct. Since one game

-k T occurs in h for every i and there are only n games, some game1 1 2,....1

H %must occur in h for an infinite subsequence h .h2 . of hi)

th tiI i h- 1Then the k component a' of h 1(h I... h (s) ... ) belon:g: to S h Ifor some

and the k component of h I I -2 1i. k 1 2- 1 1_2-2

idintical to the kth component of h (h (...h'(s)...) and is a member of

S for sore hi2 k Hk. One thus obtains an infinite sequence hi ,hi2 of
hi 2 k1 2 of

members of H k such that some element s' of-f k belongs to Sh , and for each

k i1

p, hi _(hi .2.hi(S')..)C Sh . This contradicts the assumption that

P p I pp
431kH kTk is Grundy-Tractable and hence progressively finite.

The importance of the sum of Graph-Interpretable games stems from the fact

that if the Grundy-Functions of the components are known, then the Grundy-

Function of the sum can be calculated quite readily.

To indicate the method of this calzulation one needs to define a special

binary operation G) betuwon non-negative integers. Let a and h be two such

integers. Let

a0 + at2 + at2 2 + ...am2M Of(% 1

b b+ b 2 b22 + b2" 0 1.4 1b - b + bi2 +bi + ... b~ b < '1
0 1 1n i1

i.e. let amem 1 ... a0 and b b b be the binary representation a and b.
m M-1 0 n n-l- 0

One can assume without loss of generality that m - n and that some of the leading

binary digits are 0.
L



One defines

c =b) 0 + 2 + €222 + c m2

where for each 1, c, ai + bi (mod. 2).

It can be seen easily that the Goperation is a group operation on

Integers, w.'th 0 as the unit element and every integer its own inverse.

The following theorem Indicates the use of the 0+ operator in the cal-

culation of the Cruny-Functions of sums of gaes.

Theorem 3.19 Let 0 1 1Bt I ) a 12,...n be a collection of Graph-Interpretable.

Grundy-Tractable games and let Mt be their Grundy functions. One defines

M on their sum as follows

M((ql,...B n)) M1( 1) 2(s2) 6 ... G} n(Sn).

H is a Grundy-Function on the sur.

Proof: Let H((s1,s2 ,... a )) - k and let M i 1I) - n,. One has to show that for

all hEH such that (sl...Sn)ESh, h#(h((s 1 ,s 2 ,...sn))) 0 k a&&i for each integer

m(k there exists an hiH such that (s1,...Sn)( Sh and M(h((s1 ,...S n))) -

Let k - k0 + k 12 + ... kt2t

0 1 t
and for each i nI a ni0 + n112 + ...ntt2

Let h((s 1 s2  'an)) " (61' , .. n )
Then there exists a j such that a a! for a11 I j and a' - b(s)

for some he H. Then M (sl) -n Now a

Q)nj 1 4M () n ID... n n and M((slva 2 ...s)) k - n1 Cn 2 @... n

...nn, whence

.... + H ((a . * )

Since Kh(sj ) 0 n,, M((& proving that for

all h such that (ll2,n)A Sh, H(h((s 9s2 ...a n))) , ((s4s2 . n

Let m< k.

Let m - 0 + m12+...+t 2 . Therc must be at least one J such that mj k
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since m 0 k. Let JO be the largest such integer. Since P<k, m - 0 and

k - 1. Since kjo 1 , there Is an I., such that niO jO  I . Define an

itinter n' n +n 2 +.tn10' 2  as follows:1 0 10 111

- if - k

;Oj l no + I(od 2) ifm k.
Since mj k f for J.jo andajo 0 k,, and no 1, we have

n I for J>jo'

Also

nlj< <n . since n' 0.
o 0100

Hence no< n . Moreover, for each J<t,
0 0i

kj a nj + n2 j +...11( 1 0 1 )j + no j + n(lo+l)j + n nj (mod.2).

Consider

Pj n 3 + n + + n + n + n (mod. 2)
Z J 2 0i-l)j 10 ni Il

whence p3 + k a n + n

whencep nk ifandonlyifnj n I.e. if and only if m k Henceweepj 1 0j 2f 0n onk if J

P3  M for every J. Hence

M a 01 (D n 2 e n(1 o_) Gfn ((n(I +l."

Since n. n - ), there exits an a,' 1 ad an he
ta M 0 Ni(i0 00t 0  H1 0

such that M (&O) - I and h(sO) - 0. Hence there exists an h'4E H such

that h(( l 2 ,...s )) (sle .i t.I' i0  +l,...n) and
( , 2, I 2o.... +i0"'n)) = m.

If one is given a graph-interpretable game(51,H.T> which is the sum of a

finite number of graph-interpretable, Grundy-Tractable Game, then one can calcu-

.. late the Grundy-function of< 5 I,H,T) identify the set U Ki for it and construct
I

a winning strategy. This necessitates a knowledge of the Grundy functions of
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each component. However, since the component games have much fewer statcrs,

their Grundy furctiona may be calculated by the exhaustive ttchnique indiczted

in Theorem 3.16.

This technique of constructi~n for winning strategies, of course, i limited

to graph-interpretable games which can be decomposed into Grundy-tractahle gazua.

In what follows conditiOns will be set down for the graph-interpretability of

board games and decomposability of graph-interpretable games.

Theorem 3.20 A board game..,FG,W,L> in graph interpretable if and only if

there are two subsets So l S1 of S and two one-one maps

F* C

such that

i) LEs OS; WS-s 1

i i) 5C S LU S tSi) g G g- f 'F f- 0

Ili) 0( (S) - s(s S

iv) Cx (f(s)) = (f)(*(s)); o(g(s) 1 (o ( 5))

for each f F. gjG and any seS for which either side of the

equation is defined.

v) o(L) W w

vi) So0US, S

Proof: Let <S,FC,W,L> be Graph-Interpretable. There exists a met n a set H

of partial functions mapping subsets ofAs Into S and a subset T of.fl satisfying

*Gri to Gr4. Define So j(B.0)~ s8(a IjIand S,- (s,1)( 1 a 4- M Then (vi)

is satisfied.

Definet((s,O) - (s,l) for each element of S This is one-one from S onto
0' 0

S1 . Also (s,k)d S for gaG implies k I whence (s,k) S Hence y S RS

Similarly U S fSo satisfying (ii).
ficF f 0



Similarly LiS proving (1).

If (,O) L then s*T and e<(saG) (a,1) whence O (s.O)C-(sl) sc T - W.

Hence Ol (L)G W. It can be shown similarly that 'A-1 (W) SL proving (v).

For each EC F there exists an hcl0 and giC such that Sf - fn.O) I a (Sh

and S. - (8,1)1 * Sh  , f(sO) (h(s),1) and g(4,1) - (h(s),O). I one defined

(f) - g, the resulting P is one-one onto. Alzo (iII) and (iv) will

be satisfied by thi .

Let now 4S,F,,,W,L> , So l SP Oand ( be ms defined by (I) through (vi).

Then one can define 11 H and T ac follows: fS1 SxS such tat (nRos1 )4L if and

only it al a 0((5 IHence s 0 Sa and S 1 r , Denote so by ( 0 61,s), O and

a1 by 1(,o, ),. Since o( is one-one onto, and because of (vi), if sES

then either of S1I and Be it~ l*)*,l or ao S and s0so'(),O

s6L S0 if and only if oi(s)EWSS 1I  Define by T the set of all pairs

(s,O* (s)) such that ad L. Then sC T if and only if (s,O) £ L and (s,1)e W.

This establishes Gr2.

P h I h:."rh.q.S is constructed as follows. Let f, F and SE 4.. Then

by (ii) and the construction of~n, .a - b(..()).O1 " ky (iO) ()t S

Define h so that

s (S. (s(()) 1 *ses - ,sO((s)) E() 6

and h(s, (a)) - (p(f) (O (a)), f(s)); h(s.o (s))SI since by (iv) above

<((3f)(C (a))) " f(s). Also, f(s) 1 (h(s,O (s)),.). This establishes first

part of Gr3 and Cr4. The second parts follow similarly.

This theorem is included to show clearly what kind of symmetry is demanded

of a graph-representable game. The definition, based on the existence of the

graph, did not clarify the structure sufficiently.
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It may be worthwhile pointing out at this point that the Nim-tvpe games arm

graph-interpretable. This follows fErep the definItion of graph interpretable

gus, the tol *f-$ being played by the set of sequences I. The reader can

verify that eonditions CI-G4 are satisfied.

The Tic-tac-toe-like games are graph-interpretable also if there is a

premutation P on N such that A CA if and only if there exists a Be e such

that n4A if and only if P(O d B. In thin case one can met S 0 -aI(.,p - 01

and S,- 1 i s ' p ) I P" 1} . The function O( may be defined as follow~s: ((s,O)) -

(s',.) where s'(P(n)) - X if s(n) a Y, s'(P(n)) - Y if s(n) - X and s'(n) -

otherwise; is defined by (n,X) - (P(a),Y), At this point it may not be

worthwhile proving formally that the partition So.S 1 and the maps and

satisfy the conditions I - vi in theorem 3.20. However, the reader will do well

to convince himself, at least intuitively that thij is sc.

It can be strongly surinised that games like chess and checkers are also

-graph-representable in thin sense.

Theorem 3.21 A groph-representoble gamecO1,HT> is the sumu of A set of n

graph-representable gaome f<ti.H 1.Ti> 1 j it nJ if and only if there exists a

set of n equivalence relations {Ej I* i( n onQ and a set of disjoint subsets

II ' l1i~ni of H such that
i)UH' 

-H

ii) fl I, the identity relation on 4M1

ill) For any als2 , an(si& ) there exists sSL such that siEis for each i.

iv) s# T implies that for some EL iRFis' implies a'{ T

v) SEa' implies siES if and only If s'6 Sb for all hi 1I1 and
i h h

h(s)E h(s') for all h such that Sa Sh and s'r Sh.

vi) h$_H i implies for all a e Sh, h(s)E s for all j 0 i.

h
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I'Proof: The suf ficiency im prvdb cofltructntCT,,Hi,T an £011781:

A1 a st of equivalence classes oi E,. Since 1 i - 1, two distinct

elements of.% does not lie in the same equivalence class of every E . Hence

.L5_ 1')1xS) 2x.,. xOn. Let sCJlx'2x...X~y If a #. the., there is some met

u( equivalence classes e 1e2 ,.,e n (et an equivalence class of E for each )

such that eI(I e2  .,. A ) n  0. Take an element m1 ! a2C e21... n an. But

there existw s(by(ili) above) such that me e1  e 2  ... le n . This contradicts

e1  e 2 n... ne n 0. Hence sd-, proves a 1x2 2 x...XsQn V5 . Sl is thus

established.

Let Ti be the set of equivalence of E which contain some element sr T.i I

Clearly, then TTIxT 2 x...xT n , again since nE 1 
= I. Let s T; for each ± let

e be the equivalence class of E continalng a. By (iv), there exists some EI

such that '4 T for no member ' of e. Hence e j Ti. Hence .fT 1 xT 2 x...xT ., 1 n

Hence the complement of T is coitainued In the complement of TI xT 2x .. xTn or

T 2 x ...T n CT. This establishes S3.

Define H as follows. For every h'E H , define a member ht Hi, such "hati

if SaShh then the equivalence class e, of Et containing a is a member of S1j

and h(ei) is the equivalence class of Ei containing h'(s). By (v), this determines

the function h inequivocally. For all Ej (i), if e is the equivalence class

E containing a, then by (vi) e is also the equivalence class containing

h'(s). Hence if h' ij, then the h'(s) is In the intersection of the blocks

of E (JOI) containing a and the hlock h(ei). This establishes S2 indicating that

conditions (i)-(vi) is sufficient for (Sl)-(53).

To show necessity let/,Sl,H,T be the sum of .S i.Ti (1Uin). Defise

($s ,... ,E, if and only if a, ni. clearly

20 n
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(sit@2 .... sa0""s') if and only if mi ' for every 1. Th 1

establishes (ii).

Since T - T3) x... T , by (S3) (,.s2l... Fn T implies, 4T for

some i. Hence for any (ss'..s) s' - s' implies (a,, s2,...s') T.

Hence (iv) follow:.

Now for every hCH there is an unique integer i(l I n) such that

h(sl ... 8) " ( implie( Ii * Si, for some h' !i ,Uj h'(s

and as s for all j 0 i. Define the class of subsets H' as follows:

hHi' if and only if the corresponding h'WE IIi  Since there is an unique i

with this property for every element of H, the subsets II' are disjoint.

Since an i exists for every element h C It, (1) follows. Also, If

vs*l,2,....) E1 (ai,...s'), then 9 . Hence if (sls2 .... sn)C Sh

for hf.ih then sie Sh, for h'EH i hence (s '"{....s') 4E Sh also. Again
h((, ,... ) l,2,.i h(s )(,st ... M ) and h((s i ... s')) -

(s -. 1i) + .... s
n

it whence h((s 11 21 ... S))Eh( ' m
Also, h((G.s2 ,...sn)) (sis 2 ,...h(si)...sn) so that i((sl,s 2 ... Sn))E j i

(19s21 .... an ) for all J 1 1. This establishes (v) and (vi).

Let there be n elements 9l,2" "sn in 71 . Denote these by (ll,.... n),

(a21,...S2n ) ... ( nl nn) respectively. Let a' - (alla22,..Snn ). Then

aiEisi for each i. This establishes (iii).

It must be emphasized at this point that for any application of theorems

3.20 or 3.21 to be practicable, one needs to have descriptions of the blocks

of the partitions referred to in these theorems. This again necessitates the

use of a language in which such desctiptions can be expressed by tractably short

expressions. It will be indicated in the next section how some of the Nim-type

6
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games shown in Section 4 are sum-decomposable. In these cases, the descriptions

of the equivalence classes of Ei are particularly aimple.

In what follows, some of the ideas developed in this and the preceding

sections vill be exemplified for Nim class of games. Discussions of the Tic-tac-

toe class of games will be reserved for a later cnapter.
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d. Some Examples of Strsteiy-Construction

Concen'rating attention on the Nim-like games, one can quite easily construct

a winning strategy for the first gSe in the examples for all states (i,0) where

1 0 0 (mod. k+l). It can be seen that K IK - ((L+l)pl) for any integer p> 0.

This Is because for all (x1,1) 6 G such that x1 $ k, (xl,1 )((k+l)p,l) - ((k+l)p-x1 ,0).

If one chooses (k+l-x1,0)E F, one obtains (k+l-x1,0)((k+l)p-x,0) - ((k+l)(p-l),l).

If p - 1, the resulting situation is a member of W so that (x1 ,l)((k+!.) ,)e W1

for all (x1,l) satisfying condition O . The result follows by induction on p.

Hence in any situation (1,0) if I # 0 (mod. k+l), one can choose an integer x Z I

(mod. k+l) such that 0<x-k and such that (x,0)(,0)iU Ki. Since the g
I

is obviously Progressively Bounded, this yields a winning control strategy for

the set of situations mentioned.

For future discussions, it may be worthwhile pointing out that the Grundy-

function M of the graph of this game is definable as the smallest integer M(i)

such that M() Z I (mod. k+l). Figure 3.5 indicates this fact for a game with

i < 7 for all nodes and k - 2. The numeral at each node indicates the value of

I and the numeral in parenthesis indicates the value of the Grundy-Function

70) AFig. 3.5

The game with n - 2 cited in Section 4, is also analyzable in terms of the

Grundy function. However, this does not shed any further light on the cuntents

of this book. It will be analyzed in an entircly ad hoc manner.

-~--"*--..
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It can be seen in this case that the situations ((2p,2q),l) belong to U Kt W

for all pq. For q - p - 0, the situation belongs to W. Also, for all p and q

the only situation to which the disturbance can move are ((2p-1,2q),O),

((2p,2q-l),O) and ((2p-l,2q-l),O) from which the control can move to

(2(p-4Z(q-I),O). For q 0, and p - 0, q - 1 and p i 1, q 0 0, then

((2p,2q),1) is a member of K1 . The result follows by induction.

One can express the above results by saying that if the control can reduce

the situation to the case where both heaps are even, Lhen the disturbavce has

to reduce at least one heap to an odd number from which the control can move

always to a "both even" situation.

In both of the above cases the descriptions of L Ki was expressible in s

language containing predicates Involving ideals of integers modulo fixed integers.

However, there was very little indication of an uniform procedure for generating

the description. One may say that If one has an efficient "pattern recognition"

procedure and a pre-defined knowledge of patterns such s equivalencen mod. k,

one can recognize theme patterns through case studies, generating a theorem

(like ((2p,2q),)E U Ki from the recognized patterns and proving them.

In some fortunate cases, the structures of sets like K and W become

quite transparent; in others, techniques indicated by Theorem 3.20 and 3.21

become effective. This latter can be exemplified by the two last classes of

games mentioned In Sec. 3.

One can see that both of these games (n is any finite number, and --

( X)(J#'-* xj a 0 and z,> 0) in the first case and O Sa ( xi) (J0i., xj- 0

and k xi O) for some specified k in the second case) can be described as sum-

compositions of n games. In the first case (x,> 0) the value Crundy-function

of each component graph at each node equals the number of sticks in the heap

(this fact can be gleaned from a very simple "pattern recognition", at present
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non-mechanizable). In the second case, the value of the Grundy-Function at

each node can be calculated by the same method as indicated for the case n - 1.

Once these Grundy Functions are known, the Grundy functionft of the sum gname is

calculated by the method indicated in 0--em 3.19,

A specific example will make the procedure clear. Let us take the case

where there are 4 heaps of sticks and each move consists of removing not more

than 3 Lcks from one of the heaps. Then the value of the Grundy function for

the situation ((i1 ,12,i3,14),p) is M(I1)( M(i 2) (P(1 3 ) Q M(i4) where 4(ik) is

the remainder obtained by dividing ik by 4. A winning strategy exists for all

situations where a control is applicable and the value of the Grundy Function is

not zero. For example, for the situation ((7,7,6,5),0) the value of the Grundy-

funation is 3 (9 3 ( 2 (9 1 a 3. The value can be reduced to zero, y removing

3 sticks from either the first or the second pile, reducing the situation in the

first case to ((4,7,6,5),l). Any disturbance renders the value of the Grundy-

function to non-zero. As an example, the disturbance ((0,0,0,2),l) reduces the

situation to ((4,7,6,3),0) whose Gruddy function is 0 G 3( 2 a 3 - 2. The

move ((0,0,O,2),0) reduces the situation to ((4,7,6,1),l) whose Grundy function

is 0 0 3C 2 ( 1 - 0. A typical continuation to the end is shown in Fig. 3.6.

The result of Theorem 3.19 is the strongest one known to the author regarding

the calculation of Kernels of game graphs. Other results pertinent to calculation

of Grundy-functions of graphs are known; however the calculations are still pro-

hibitively lengthy except in special cases. Results for parallel decomposition

of graphs are available only for cases where the structures of the component graphs

obey severe restrictions.

Many games do not have evident decompositions of the type exemplified above.

However, it is believed that theorem 3.21 and various weaker forms may enable

the recognition of decomposability in games which are not evidently decomposable.-. .
0
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((7,7,6,5) ,0)

I((3,0,0,0),O)

I ((1,7,61),O0 j0,0,2),0)

F 
((1,7,6,1),1)

S((1,0,0,0) .1)

((0,,6,1,1) ((0,0,2,0) .1)
((0 ,7,4,1),0)

((0,,4,),0)(((.3.00)1) ((,5 ,,4.1,

~ ((001,,00) .0)

* ((0,0,2,0).0)

,((0,1,0') .0)101)1

((00,01010

SFig. 
3.6
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One may look for relaxation of these conditions by realizing that the

relation R corresponding to the Same may be partitioned into various classes

of functions and one need not restrict oneself to an unique set H of functions.

One can try various partitions of R (as long a the elements of these partitions

are easily describable) so that the conditions of Theorem 3.21 are satisfied

by one of them.

Another way of relaxing the stringent conditions is to look for an analogous

theorem Involving covers rather than partitions in some manner analogous to

the way Hartuanis and Steam develop their concept of St Systems. Very little

work has been done in these directions so far as Ie known to the author. A

large amount of work may have gone into the calculation of Kernels of graphs

composed by means other than summing: If that is no, then the paucity of the

results indicate that methods for these may be difficult to come by.

In the rest of the present chapter another method for recognizing will

be discussed that has been used successfully in literature.

0 
a
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9. Recggiing Forcing States Through Linear Evaluation
One often tries to recognize mebers of i Wi by devising languages suitable

to their description. This language any be constructed by a carefk evaluation

of its predicates with respect to the rules of the gae (as ertioned earlier,

one technique for doing this vith respect to the tic-tac-Loe like games will be

described in detail later). Another way of constructing the language might be

to use predicates which have been found useful in the game (useful in some sense)

and try to construct combinations of them whose denotations hopefully coincides

with J W
One mode of combination of predicates that has received a lot of attention

In literature can be given the general name "linear coubination". In its most

elementary form this coincides with the mode of combination called "combination

by linear threshold gates". The predicates, in these cues, denote the equiva-

lance classes of the Kernels of functions mapping the universe of discourse into

real numbers.

Let S be a set and : S-* R be a function mapping S into real numbers. The

Kernel of this map is the equivalence relation E -40J -1 defined as follows:

aI Es2 if and only if f (a1) - ( 2 )

This equivalence relation partitions S into disjoint sets, yielding one set for

each real number in the range of * Each equivalence class is the denotation

of a predicate of the forml (s) - r. Let these predicates be represented by P

Let -;" be a finite set of functions defined on S and let

Pirci~ r e range of be the set of predicates associated with~ then.

Let ji.. * n be a set of reals. One can define a new function on 9 as a

linear combination of the
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If the range of each function (f .6 is fliote, the Kernel of Wines

a partition of S which is of finite index and whose equivalence classes are

obtained from the equivalence classes of the Keraels of 1/f by means of set

operations.

Let each of the be a characteristic function of some subset of S.

Also, let us define a subset T of S as follows:

stT If ,S
where Is a specific real number. Clearly T is the union of a set of equiva-

lence classes in the Kernel of , The characteristic function of T is often

called a "linearly separable function" of the subsets defined by the ? and

their complements.

In what follows, attention will be restricted to linear combinations of

predicates in general; the discussion above is included to indicate the our

understanding of linear combination of predicates extends no further than what

is understood about linearly separable functions.

In what follows it will be shown how a certain functlion can be defined

from the set of situations to reals in such a way that 'f(s) exceeds a constant

value for all members of i9WI. Remarks will then be made regar'Ung the feasi-

bility of constructing (•) as a linear combination of the other functions.

Let < S,F,G,W,L>. be a board game. DefJP' a function:

0S f4 FSf -# CS I.~

having the following property

Li) a W and Y" (a) implies s' CW

L2) acL and (s') (f(s) implies s- C L.

It is clear that

Lemma 3.22 (s) (a)
s U s L (s)
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Proof: Otherwise there exist real nubers y mnd y' such that

Thmn there exist sW and s'G L much that y " (s) and y' - f ('). But

then by LI and U, both a and at are mambara of L and W. Since L and W are

disjoint, this is Impossible.

It can also be seen easily that if S - U S - Li S , W lL, then for
ft F f gElG 9

any situation @4S - 0 Q S - -L,
f e F ~f gGS,(a) >,:I (a) > .1, 4) (.)

whence in this came > ( L) . (a). However, it is always true that fora W a s
any element ss- V Sf - U S. (61> tw n(') implies ad W. if

f6 F f EG S5 9 (~

F and G are finite, one can extend j into . defined over some elements of

(U0 ( sg) as follows
fa F S)U(RSGe(. -f(s) if 6s -C S- U s

feF f geC g

f S I a 4 V SIV (s) w .in Ir(g(s))( aE SgI if q g- G 8

4'(s) MAX Ya I(f (8)) 1 s* Sf if a (- fYF Sf

In the second and third equations above, if the right hand side Is not defined,

then the left hand side is not defined either. Hence V'(s) may not have S as

its domain. The following however, is true.

Theorem 2.23 In a progressively bounded board game where Cf(d) f (a)

for sme .. ',, s.- S~, and W(s)> S , 9() if and only if .
fo oeWw CfVF Sf ., feW i I*

Proof: Define a control strategy Q as follows:

i) If Y(s) is not defined then Q (a) - f where f is the first

element of F (in some given ordering) such that s e Sf,

ii) If 'j'(s) is defined, then QF(m) is the first element of F (in the given

ordering) such that +'(QF(s)()) - )(z). By definition of , such an element

must exist.

- - . . . . . .
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Q is a winning strategy for all elementsc ( F Sf such that

1a)' -JA t(s). To ace this, lot Q be an arbitrary disturbance strategy.

Let Y'(so>. f/4 f(s). Define a sequence of situations os follows:

a1+1 " QF(ai)(sI ) if I Is even

ai+i - QG( 1)(4 ) if i Is odd.

One can see immediately that for all I, Y(s i) ) . This is true for

0. 0. Let it be true for I e k. If k is odd, then a k+i 0 R(sk) for some g, G.

By definitio, .. k )' '(d k) If k is evgn, then by definition of

QF' T(sk+l) " ( '

Since the game is progressively bounded there is a last element sm of the

sequence soI i mC NJ fa F; f g- 1 S - L S .Also +1(s) i9(s) (it
e fW~p s). Hence sm6 W. Since Qi is arbitrary, QF is a winning strategy for

sO. Since a winning strategy exists for OsO C W .

Conversely, let SOt WkC Y Wi . If k - 1, then there exists an fCF such

that f (a )CW en hence %f(a))> * f(s). y definition of

>/ (f (00)) r' - 4(s). Hence if a CW1 0 9(s)> *7x
Let it be true that if a6 ? l W1, then tf (s) 42Z P(s).

Let SOG Wk+l. Then there exists an ff F such that for all gc G such thatk

S(a)6 , S(f(A))c kU W q'(g(f(a s))).> * f (a). Henco t'(f ( 0))

min~ 9(a(f (a0)) (so) C, Os >" Mu '~<)-' (fms)) by deft-

nition. Hence (No), I" 99).

The above theorem showa that if 9 (a) could be calculated for all s for which
eis defined, then a cautious strategy could be applied for the choice of

controls. However, P (a) cannot be calculated from definition with any practi-

cable degree of efficiency.

In case one can easily calculate a met of functions ( 1? f2 '.. n mapping

S into reels such that
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~P "1° +2i2 1 +'"+ 2n

then the predicato

is a linear combination of the predic~tes corresponding to the equivalence

classes of the Kernels of the functions,

Given a set of functions f "f2.... In' a calculation of V would Involve

the search for a set of real numbers 94,-2 ... w i, with the two following

properties. For all S -f y 5f - gIG L S

7t4 i(9)>Oif and only if .6W and for all.a *F Sf

() 1 ai (g(f(s)) I a Sf and f() t S In the case
f 6 F adg

where theft are characteristic functions, methods are known for obtaining the

fi by an adaptive procedure when they exist W151 so that they satisfy the first

of the above two conditions. Som of the algorithms also indicate impossibility

of fulfilling the conditions when no set Q ,.2... exists which can fulfil it.

Very little theoretical study has gone into methods

when no set 6~lJ .. exists which can fulfil it. Very little theoretical
P2

study has gone into methods for fulfilling the second condition even when it

can be fulfilled.

lowever, some excellent case studies have been done by Samuel [.01 on the

game of checkers where certain adaptive techniques have been explored for the

calculation of the Qi1 The/f i'u were calculated by giving suitable mathematical

interpretations to certain well-known Important evaluations of checker-board

poeitions. The43i 'a were calculated over a course of many games by adjusting

them to fulfill the second condition above. The strategies resulting from the

- .~.~'. - = -.-.* .~ . . * . ~ c --..-*-

~~.
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approximate descriptions of L) W o obtained have yielded an extramey powertui

checker-playing program, There are indicatians that by the use of more than one

"layer" of threshold logic, a stronger program can be obtained. However, the

only method aveilable for testing the s*trategles seems to be operational, to

wit, accumulating statistics regarding the performance of the program against

strong players.

[ m m m
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